Những câu hỏi liên quan
LL
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
KK
Xem chi tiết
PG
Xem chi tiết
HP
Xem chi tiết
ND
17 tháng 7 2018 lúc 9:39

Ta có:

\(\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\Leftrightarrow\dfrac{3a\left(a+b\right)+3b\left(a+b\right)-12ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\dfrac{3a^2+3ab+3ab+3b^2-12ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\dfrac{3a^2+3b^2-6ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\dfrac{3\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng)

Tương tự ta có:

\(\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế (1) (2)(3) ta được:

\(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{2}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{12}{a+b}+\dfrac{8}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\)

Bình luận (0)
MC
Xem chi tiết
TN
30 tháng 7 2018 lúc 22:33

Xét hiệu \(VP-VT=\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)-\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\right)\)

\(=\frac{3a^3b^2+5a^3c^2+3a^2b^3-9a^2b^2c-7a^2bc^2+5a^2c^3+3ab^3c-8ab^2c^2-3abc^3+4b^3c^2+4b^2c^3}{4abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Dễ thấy: \(a;b;c>0\) nên cần chứng minh 

\(3a^3b^2+5a^3c^2+3a^2b^3-9a^2b^2c-7a^2bc^2+5a^2c^3+3ab^3c-8ab^2c^2-3abc^3+4b^3c^2+4b^2c^3\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(8a^3+5a^2b+3a^2c-4ab^2-4ac^2-b^3+3b^2c+5bc^2+c^3\right)\left(b-c\right)^2+\frac{1}{2}\left(3a^2c-2a^3-5a^2b+4ab^2+4ac^2+7b^3+3b^2c-5bc^2-c^3\right)\left(c-a\right)^2+\frac{1}{2}\left(2a^3+5a^2b-3a^2c+4ab^2+4ac^2+b^3-3b^2c+5bc^2+9c^3\right)\left(a-b\right)^2\ge0\)

Bình luận (0)
MC
31 tháng 7 2018 lúc 11:42

Tớ ko hiểu lắm

Bình luận (0)
TN
31 tháng 7 2018 lúc 13:35

Minh dung phuong phap bieu doi tuong duong thanh tong cac binh phuong do ban nhung cac nay khong hay cho lam.

Bình luận (0)
PC
Xem chi tiết