A= {x thuoc R / x^2 +x+3=0}
CMR
a) x^2-7x+16>0 vs moi x thuoc R
b) 3x^2-3x+1>0 vs moi x thuoc R
c) -x^2+3x-5<0 vs moi x thuoc R
d) 3x-2x^2<0 vs moi x thuoc R
CMR:
a) x^2-7x+16>0 vs moi x thuoc R
b) 3x^2-3x+1>0 vs moi x thuoc R
c) -x^2+3x-5<0 vs moi x thuoc R
d) 3x-2x^2<0 vs moi x thuoc R
a) x2 - 7x + 16
= (x2 - 2x\(\frac{7}{2}\)+ \(\frac{49}{4}\)) + \(\frac{15}{4}\)
= (x - \(\frac{7}{2}\))2 + \(\frac{15}{4}\)> 0
b) 3x2 - 3x + 1
= [\(\left(\sqrt{3x^2}\right)^2\)- 2.\(\sqrt{3x^2}\).\(\frac{\sqrt{3}}{2}\)+ \(\frac{3}{4}\)] + \(\frac{1}{4}\)
= (\(\sqrt{3x^2}\)- \(\frac{\sqrt{3}}{2}\))2 + \(\frac{1}{4}\)> 0
c) -x2 + 3x - 5
= -(x2 - 3x + 5)
= -(x2 - 2x\(\frac{3}{2}\)+ \(\frac{9}{4}\)+\(\frac{11}{4}\))
= -[(x - \(\frac{3}{2}\))2 + \(\frac{11}{4}\)] < 0
d) Câu này sai đề rồi bạn ơi
cho tập hợp A={ x thuoc R| 2x+m>=0}, B={x thuoc R|x-2m>0} tính tổng S tất cả các số nguyên của tham số m để {1} tập con A giao B
cmx^2+2x+5>0 moi x thuoc R
cmx^2+3x+6>moi x thuoc R
\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\ge4>0\)
\(x^2+3x+6=x^2+3x+\frac{9}{4}+\frac{15}{4}=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)
1)Tìm x,y thuoc Z thoa man dong thoi
x^3+y^3=1 x^7+y^7=x^4+y^4
2)Cho A=y^5 - 5y^3 +4y y thuoc Z
CM nếu y ko chia hết 3 thì A chia hết 360
3)Tìm P(x) bậc 4 thỏa mãn
P(-1)=0 , P(x)-P(x-1)=x*(x+1)*(2x+1) voi x thuoc R
1)Tìm x,y thuoc Z thoa man dong thoi
x^3+y^3=1 x^7+y^7=x^4+y^4
2)Cho A=y^5 - 5y^3 +4y y thuoc Z
CM nếu y ko chia hết 3 thì A chia hết 360
3)Tìm P(x) bậc 4 thỏa mãn
P(-1)=0 , P(x)-P(x-1)=x*(x+1)*(2x+1) voi x thuoc R
cho x,y thuoc R khac 0 thoa man 2x^2 + y^2/4 +1/x^2 = 4. tim gtnn gtln cua A= 2008+xy
1) Tim a, b thuoc Q biet: a-b=2(a+b)=a:b
2) Tim x thuoc Q sao cho: (x-1)(x+3)<0
Tim x thuoc Q
a, (x+1)(x-2)<0
b, (x-2)(x+2/3)>0
\(\left(x+1\right)\left(x+2\right)< 0\)
Mà x+1 < x+2
\(\Rightarrow\begin{cases}x+1< 0\\x+2>0\end{cases}\)
\(\Rightarrow\begin{cases}x>1\\x< 2\end{cases}\)
\(\Rightarrow x\in\varnothing\)
b)
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
(+) Với \(\left(x-2\right);\left(x+\frac{2}{3}\right)\) cùng dương
\(\Rightarrow\begin{cases}x+2>0\\x+\frac{2}{3}>0\end{cases}\)
\(\Rightarrow\begin{cases}x>-2\\x>-\frac{2}{3}\end{cases}\)
=> x > - 2
(+) Với \(\left(x-2\right);\left(x+\frac{2}{3}\right)\) cùng âm
\(\Rightarrow\begin{cases}x+2< 0\\x+\frac{2}{3}< 0\end{cases}\)
\(\Rightarrow\begin{cases}x< -2\\x< -\frac{2}{3}\end{cases}\)
=> x < - 2
Vậy x>2 ; x< - 2
a ) \(\left(x+1\right).\left(x-2\right)< 0\)
\(=x.\left(x-2\right)+1.\left(x-2\right)< 0\)
\(=x.\left(x-2\right)+\left(x-2\right)< 0\)
\(\Rightarrow x\in Z\)
\(\Rightarrow x>2\)
b ) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(=x.\left(x+\frac{2}{3}\right)-2.\left(x+\frac{2}{3}\right)\)
\(\Rightarrow\left(x+\frac{2}{3}\right)\in\)số nguyên
Nên \(x\in\) phấn số
a) Vì (x+1)(x-2)<0 nên x+1 và x-2 trái dâu. Mà x+1> x-2 nên x+1>0 => x > -1 ( x thuộc Q)
x-2<0 x < 2
Vậy -1< x < 2 ( x thuộc Q)