\(\sqrt{4\:+2\sqrt{3}}\)+ \(\sqrt{4-2\sqrt{3}}\)
Giải chi tiết giùm mình luôn nha >_<
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\sqrt{4+2\sqrt{3}}\)+ \(\sqrt{4-2\sqrt{3}}\)× ( 97 - 98 )
Giải chi tiết giùm mình luôn nha >_<
\(=\left(-1\right)\sqrt{\left(\sqrt{3}+\sqrt{1}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}\)
\(=\left(-1\right)\cdot\left(\sqrt{3}+1\right)+\left(\sqrt{3}-1\right)\)
\(=\left(-\sqrt{3}-1\right)+\left(\sqrt{3}-1\right)\)
\(=-2\)
\(\sqrt{14-8\sqrt{3}}\)- \(\sqrt{9+4\sqrt{5}}\)
Giải chi tiết giùm mình nha :3
có ai biết giải ko giải hộ mình mấy bài này với ( giải chi tiết hộ mình nhé)
1, \(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
2, \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
3, \(\sqrt{4+\sqrt{5\sqrt{3+}5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
4, \(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)
5, \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
6, \(\sqrt{4+\sqrt{8}.\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
7, \(\sqrt{8\sqrt{3}-2\sqrt{25\sqrt{12}+4\sqrt{192}}}\)
\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)
\(=\sqrt{12}+1=2\sqrt{3}+1\)
\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-1\)
\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)
\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)
2) biến đổi khúc sau như câu 1:
\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
4) Ta có: \(\sqrt{30-2\sqrt{16+6\sqrt{11+4\sqrt{4-2\sqrt{3}}}}}\)
\(=\sqrt{30-2\sqrt{16+6\sqrt{11+4\left(\sqrt{3}-1\right)}}}\)
\(=\sqrt{30-2\sqrt{16+6\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{30-2\sqrt{16+6\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{30-2\sqrt{28+6\sqrt{3}}}\)
\(=\sqrt{30-2\left(3\sqrt{3}+1\right)}\)
\(=\sqrt{28-6\sqrt{3}}=3\sqrt{3}-1\)
5) Ta có: \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
\(=\dfrac{5\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{\sqrt{75}-5\sqrt{2}}\)
\(=\dfrac{5\left(\sqrt{3}-\sqrt{2}\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}=1\)
có ai biết giải bài này k hộ mình vs ( giải chi tiết hộ mình nhé)
1, \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)
2, \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
3, \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}\)
4, \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=\left(\sqrt{19}\right)^2-3^2=19-9=10\)
2) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{8+2\sqrt{7}}{2}}-\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1}{\sqrt{2}}-\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
3) \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}=\sqrt{8+\sqrt{4.15}}+\sqrt{9.5}-\sqrt{4.3}\)
\(=\sqrt{8+2\sqrt{15}}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}=\left|\sqrt{5}+\sqrt{3}\right|+3\sqrt{5}-2\sqrt{3}\)
\(\sqrt{5}+\sqrt{3}+3\sqrt{5}-2\sqrt{3}=4\sqrt{5}-\sqrt{3}\)
4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2+2.2.\sqrt{5}+2^2}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\sqrt{5}-2=-4\)
1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=19-9=10\)
4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{5}-2-\sqrt{5}-2=-4\)
GIẢI PHƯƠNG TRÌNH :
a, \(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
b,\(2\sqrt{x+3}=9x^2-x+4\)
c,\(2+3\sqrt[3]{9x^2\left(x+2\right)}=2x+3\sqrt[3]{3x\left(x+2\right)^2}\)
GIẢI CHI TIẾT GIÙM MK NHA
Câu c nè
Đặt \(3x=a\)
=>\(9x^2=a^2\)
Đăt \(x+2=b\)
=>\(\left(x+2\right)^2=b^2\)
ta có
\(a-b=3x-x-2=2x-2\)
<=>\(2x=a-b+2\)
Khi đó pt đã cho trở thành
\(2+3\sqrt[3]{a^2b}=a-b+3\sqrt[3]{ab^2}\)\(a-b+3\sqrt[3]{ab^2}-3\sqrt[3]{a^2b}=\left(\sqrt[3]{a}\right)^3-3\sqrt[3]{a^2b}+3\sqrt[3]{ab^2}-b^3=0\)
<=>\(\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^3=0\)
<=>\(\sqrt[3]{a}=\sqrt[3]{b}\)
<=>a=b
=>3x=x+2
<=>2x-2=0
<=>x=1
nhớ tick nha
Tính
a)\(\dfrac{2}{\sqrt{3}+1}-\dfrac{2}{\sqrt{3}-2}\)
b)\(\dfrac{4}{\sqrt{5}+2}+\dfrac{2}{\sqrt{5}+3}\)
Mọi ngì giải chi tiết giúp mik nha
a: Ta có: \(\dfrac{2}{\sqrt{3}+1}+\dfrac{2}{2-\sqrt{3}}\)
\(=\sqrt{3}-1+2+\sqrt{3}\)
\(=2\sqrt{3}+1\)
b: Ta có: \(\dfrac{4}{\sqrt{5}+2}+\dfrac{2}{3+\sqrt{5}}\)
\(=4\sqrt{5}-8+\dfrac{3}{2}-\dfrac{\sqrt{5}}{2}\)
\(=-\dfrac{13}{2}+\dfrac{7}{2}\sqrt{5}\)
tính :giải chi tiết nha
\(\sqrt{7-4\sqrt{3}}\)
\(\sqrt{9+4\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}\)
\(\sqrt{7-4\sqrt{3}}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
\(\sqrt{9+4\sqrt{5}}=\sqrt{2^2+2.2.\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2+\sqrt{5}\right|=2+\sqrt{5}\)
\(\sqrt{11-4\sqrt{7}}=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}.2+2^2}=\sqrt{\left(\sqrt{7}-2\right)^2}=\left|\sqrt{7}-2\right|=\sqrt{7}-2\)
\(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)
\(\sqrt{9+4\sqrt{5}}=\sqrt{5}+2\)
\(\sqrt{11-4\sqrt{7}}=\sqrt{7}-2\)
\(\dfrac{\sqrt{x+1}}{\sqrt{x-2}}\)\(+\dfrac{2\sqrt{x}}{\sqrt{x+2}}\)\(+\dfrac{2+5\sqrt{x}}{4-x}\)
tìm điều kiện xác định(giải chi tiết hộ mình nha)
ĐKXĐ: \(\left\{{}\begin{matrix}x+1\ge0\\x-2>0\\x+2>0\\x\ge0\end{matrix}\right.\) và \(4-x\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>2\\x>-2\\x\ge0\end{matrix}\right.\) và \(x\ne4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x\ne4\end{matrix}\right.\)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}\)-\(\sqrt{4+2\sqrt{3}}\)=?
giải chi tiết nha!!
Ok !! chi tiết =))
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{1+2+3+2\sqrt{2}.\sqrt{1}+2\sqrt{2}.\sqrt{3}+2\sqrt{1}.\sqrt{3}}-\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=1+\sqrt{2}+\sqrt{3}-\sqrt{3}-1\)
\(=\sqrt{2}\)