So sánh
a)A=26^2 -24^2 vs B=27^2 -25^2
b) A=2011*2013+2013*2015 vsB=2012^2+2014^2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
bài 2: Tính nhanh
a) A = 201^2
b) B= 498^2
c) C= 93. 107
d) D= 2016^2 - 2015. 2017
e) E= 2016^3 - 1
________
2016^2 + 2017
g) G= 2016^2 - 2015^2 + 2014^2 - 2013^2 + 2012^2 - 2011^2 + 2010^2 - 1^2
\(201^2=\left(200+1\right)^2=200^2+2.200.1+1^2=40000+400+1=40401\)
\(498^2=\left(500-2\right)^2=500^2-2.500.2+2^2=250000-2000+4=248004\)
\(93.107=\left(100-7\right)\left(100+7\right)=100^2-7^2=10000-49=9951\)
\(2016^2-2015.2017=2016^2-\left(2016-1\right)\left(2016+1\right)=2016^2-2016^2+1^2=1\)
1. Tính nhanh:
B= 324 - (274+1) x (96-1)
2. So sánh
2011 x 2013 + 2012 x 2014 và 20122 +20132 -2
Chứng tỏ:
A=2^2011+2^2012+2^2013+2^2014+2^2015+2^2016vàAchiahếtcho21
Giúp mình với T^T
1. Tính nhanh:
B= 324 - (274+1) x (96-1)
2. So sánh
2011 x 2013 + 2012 x 2014 và 20122 +20132 -2
1) 1
2)Ta có: 2011 x 2013 + 2012 x 2014 =8100311
20122 + 20132 - 2 =8100311 .
Vậy ta đã thấy 2 số bằng nhau
Kết luận : 2011 x 2013 + 2012 x 2014 = 20122+ 20132 - 2
1, \(B=3^{24}-\left(27^4+1\right)\left(9^6-1\right)\)
\(=\left(3^{12}\right)^2-\left(3^{12}+1\right)\left(3^{13}-1\right)\)
\(=\left(3^{12}\right)^2-\left[\left(3^{12}\right)^2-1\right]\)
\(=\left(3^{12}\right)^2-\left(3^{12}\right)^2+1\)
\(=1\)
Vậy \(B=1\)
Tính hợp lý (2011/2012+2012/2013+2013/2014+2014/2015)×(1/5-2/3:10/3)
A=2016-2015+2014-2013+2012-2011+....2-1.GIÚP mk nha
A=(2016-2015)+(2014-1013)+(2012-2011)+....+(2-1)
A=1+1+1+...+1 ( có 108 số 1)
A=1x108=108
A=2016-2015+2014-2013+2012-2011+....2-1
A= 1. + 1. + 1 ........... +1( và có 108 số 1 khi mình trừ đi hết)
A=1x108=108
A=2016-2015+2014-2013+2012-2011+....2-1
A= 1. + 1. + 1 ........... +1( và có 108 số 1 khi mình trừ đi hết)
A=1x108
=108
Cho A =2^2011+2^2012+2^2013+^2014+2^2015+2^2016. Chứng tỏ A chia hết cho 21
A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016
= (22011 + 22012) + (22013 + 22014) + (22015 + 22016)
= 22011(2 + 1) + 22013(2 + 1) + 22015(2 + 1)
= 3.22011 + 3.22011.22 + 3.22011.24
= 3.22011.(1 + 22 + 24)
= 3.22011.21 \(⋮\)21
=> A \(⋮\) 21
Ta có : A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016
= (22011 + 22012) + (22013 + 22014) + (22015 + 22016)
= 22011(2 + 1) + 22013(2 + 1) + 22015(2 + 1)
= 3.22011 + 3.22011.22 + 3.22011.24
= 3.22011.(1 + 22 + 24)
= 3.22011.21 \(⋮\)21
=> A \(⋮\) 21 (đpcm)
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
dễ ợt nhưng éo biết làm thông cảm nha
ban Dang Ha Trang an noi gi ki vay
Cho A= \(\frac{4+\frac{4}{2012}-\frac{4}{2013}+\frac{4}{2014}-\frac{4}{2015}}{\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}+7}\)
Và B= \(\frac{1+2+2^2+...+2^{2013}}{2^{2015}-2}\)
Tính A - B
p/S: LM ƠN GIÚP TỚ VS :
\(TA-CO':\)
\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)
\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)
\(A=\frac{4}{7}\)
\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)
ĐẶT \(C=1+2+...+2^{2013}\)
\(\Rightarrow2C=2+2^2+...+2^{2014}\)
\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)
\(\Rightarrow C=2^{2014}-2\)
\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)
\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)
\(B=\frac{1}{2}\)
\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)
\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)
VẬY, \(A-B=\frac{-1}{14}\)