tìm GTLN của \(B=x^2y^3\) với x+y=1, x>0
mn giúp với
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giúp mình bài này với!Có kèm lời giải thì càng tốt nha!Thanks!
1.Cho a,b,c là 3 số thực thỏa mãn a.b.c=1
Giá trị nhỏ nhất cua A=a^2:(1+b)+b^2:(1+c)+c^2:(1+a)
2.Với -4<x<9 .Tìmgiá trị nhỏ nhất của P=1:(9-x)+1:(x+4)
3.Cho x,y thỏa mãn x^2.(x^2+2y^2-3)+(y^2-2)^2=1
Tìm GTLN và GTNN của A=x^2+y^2
4.Tìm giá trị lớn nhất của A=Căn bậc hai (3-a)+a
5.Choa,b>0 và 3a-5b=12
Tìm GTLN của P=a.b
Giúp mình bài này với!Có kèm lời giải thì càng tốt nha!Thanks!
1.Cho a,b,c là 3 số thực thỏa mãn a.b.c=1
Giá trị nhỏ nhất cua A=a^2:(1+b)+b^2:(1+c)+c^2:(1+a)
2.Với -4<x<9 .Tìmgiá trị nhỏ nhất của P=1:(9-x)+1:(x+4)
3.Cho x,y thỏa mãn x^2.(x^2+2y^2-3)+(y^2-2)^2=1
Tìm GTLN và GTNN của A=x^2+y^2
4.Tìm giá trị lớn nhất của A=Căn bậc hai (3-a)+a
5.Choa,b>0 và 3a=5b=12
Tìm GTLN của P=a.b
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
nguyen xuan duong sr minh viet nham dau bai 3a-5b=12
Giúp mình bài này với!Có kèm lời giải thì càng tốt nha!Thanks!
1.Cho a,b,c là 3 số thực thỏa mãn a.b.c=1
Giá trị nhỏ nhất cua A=a^2:(1+b)+b^2:(1+c)+c^2:(1+a)
2.Với -4<x<9 .Tìmgiá trị nhỏ nhất của P=1:(9-x)+1:(x+4)
3.Cho x,y thỏa mãn x^2.(x^2+2y^2-3)+(y^2-2)^2=1
Tìm GTLN và GTNN của A=x^2+y^2
4.Tìm giá trị lớn nhất của A=Căn bậc hai (3-a)+a
5.Choa,b>0 và 3a=5b=12
Tìm GTLN của P=a.b
Cho x , y E Z a) Với giá trị nào của x thì biểu thức A = 1000 - |x+5| có GTLN ; tìm GTLN đó .
b) Với giá trị nào của x thì biểu thức B = | y - 3 | + 50 có GTLN ; tìm GTLN đó
c) Với giá trị nào của x và y thì biểu thức C = | x - 100 | + | y +200 | - 1 có GTLN ; tìm GTLN đó .
tìm x :
3x(x-4)-x+4=0
2x(2x+3)-2x-3=0
mn giúp em với ạ
1) \(3x\left(x-4\right)-x+4=0\)
\(\Rightarrow3x\left(x-4\right)-\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\)
2) \(2x\left(2x+3\right)-2x-3=0\)
\(\Rightarrow2x\left(2x+3\right)-\left(2x+3\right)=0\)
\(\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(3x\left(x-4\right)-x+4=0\\ \Leftrightarrow\left(x-4\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\\ 2x\left(2x+3\right)-2x-3=0\\ \Leftrightarrow\left(2x+3\right)\left(2x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Giúp mình với mình đang cần gấp
Tìm GTLN của Q = \(\dfrac{20}{\left|x+1\right|+\left|2y-3\right|+5}\)
Ta có: l x+1l lớn hơn hoặc bằng 0, với mọi x
l 2y -3l lớn hơn hoặc bằng 0, với mọi y
=> l x+1l + l 2y-3l lớn hơn hoặc bằng 0, với mọi x,y
=> l x+1l + l 2y-3l + 5 lớn hơn hoặc bằng 5
=> 1/ lx+1l + l2y-3l + 5 bé hơn hoặc bằng 1/5
=> 20/ lx+1l + l2y-3l+5 bé hơn hoặc bằng 20/5 = 4
Vậy max Q = 4
Dẫu "=" xảy ra <=> x = -1 ; y = 3/2
Chúc bạn học tốt!
Ta có: l x+1l lớn hơn hoặc bằng 0, với mọi x
l 2y -3l lớn hơn hoặc bằng 0, với mọi y
=> l x+1l + l 2y-3l lớn hơn hoặc bằng 0, với mọi x,y
=> l x+1l + l 2y-3l + 5 lớn hơn hoặc bằng 5
=> 1/ lx+1l + l2y-3l + 5 bé hơn hoặc bằng 1/5
=> 20/ lx+1l + l2y-3l+5 bé hơn hoặc bằng 20/5 = 4
Vậy max Q = 4
Dẫu "=" xảy ra <=> x = -1 ; y = 3/2
Bài 8 : Tìm GTNN của biểu thức:
F= ( x - 1 )2 + ( x - 3 )2
Bài 9 : Tìm GTLN của biểu thức:
A= 4 - x2 + 2x
B= 10x - 23 - x2
C= -x2 + 6x
a) Rút gọn A
b) Với giá trị x;y nguyên dương nào thỏa mãn x + 2y = 14 nhận giá trị nguyên dương.
Mn giúp mik nhé! mik ko làm đc mấy bài này.
Bài 8:
\(F=x^2-2x+1+x^2-6x+9=2x^2-8x+10\\ F=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2\\ F_{min}=2\Leftrightarrow x=2\)
Bài 9:
\(A=-x^2+2x-1+5=-\left(x-1\right)^2+5\le5\\ A_{max}=5\Leftrightarrow x=1\\ B=-x^2+10x-25+2=-\left(x-5\right)^2+2\le2\\ B_{max}=2\Leftrightarrow x=5\\ C=-x^2+6x-9+9=-\left(x-3\right)^2+9\le9\\ C_{max}=9\Leftrightarrow x=3\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Tìm GTNN của: \(A=x\left(x+1\right)\left(x^2+x-4\right)\)
Tìm GTLN của: \(B=-x^2-y^2+xy+2x+2y\)
Các bn CTV, giỏi toán giúp mk với, cảm ơn nhìu ạ!
Ta có : A = x(x + 1)(x2 + x - 4)
= (x2 + x)(x2 + x - 4)
Đặt x2 + x = t
Khi đó A = t(t - 4)
= t2 - 4t = t2 - 4t + 4 - 4 = (t - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> t - 2 = 0
=> t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 + 2x - x - 2 = 0
=> x(x + 2) - (x + 2) = 0
=> (x - 1)(x + 2) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy Min A = -4 <=> x \(\in\left\{1;-2\right\}\)
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A <=> t( t - 4 )
= t2 - 4t
= ( t2 - 4t + 4 ) - 4
= ( t - 2 )2 - 4
= ( x2 + x - 2 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra <=> x2 + x - 2 = 0
<=> x2 - x + 2x - 2 = 0
<=> x( x - 1 ) + 2( x - 1 ) = 0
<=> ( x - 1 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
=> MinA = -4 <=> x = 1 hoặc x = -2
a,\(A=x\left(x+1\right)\left(x^2+x-4\right)\)
\(=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(x^2+x=t\)ta có:
\(A=t\left(t-4\right)\)
\(=t^2-4t\)
\(=\left(t^2-4t+4\right)-4\)
\(=\left(t-2\right)^2-4\ge-4\forall t\)
Dấu "="xảy ra khi \(\left(t-2\right)^2=0\Rightarrow t=2\)
\(\Rightarrow Min_A=-4\Leftrightarrow t=2\)
\(\Leftrightarrow x^2+x=2\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow x=1;x=2\)
b,\(B=-x^2-y^2+xy+2x+2y\)
\(\Leftrightarrow-2B=2x^2+2y^2-2xy-4x-4y\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)-8\)
\(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2-8\ge-8\Leftrightarrow B\le4\)
Dấu"="xảy ra khi \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow x=y=2}\)
Vậy \(Max_B=4\Leftrightarrow x=y=2\)