Tim x biet: x+1/98 + x+2/97 = x+3/96 + x+4/95
(x+2/98+1)+(x+3/97+1)=(x+4/96+1)+(x+5/95+1)
\(\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x+4}{96}+1+\frac{x+5}{95}+1\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
\(\Leftrightarrow x+100=0\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\right)\)
<=> x=-100
ko chép đề nhé
\(\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95} \)
=> \((x+100)(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95})=0\)
vì \((\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}) khác 0\)
=>\(x+100=0\)
=>x=-100
\(\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x+4}{96}+1+\frac{x+5}{95}+1\)
\(< =>\frac{x+2+98}{98}+\frac{x+3+97}{97}=\frac{x+4+96}{96}+\frac{x+5+95}{95}\)
\(< =>\frac{x+100}{98}+\frac{x+100}{97}=\frac{x+100}{96}+\frac{x+100}{95}\)
\(< =>\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\)
\(< =>\left(x+100\right).\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
\(Do:\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)
\(< =>x+100=0\)
\(< =>x=-100\)
Vậy nghiệm của phương trình trên là {-100}
(x+2)/98+(x+3)/97=(x+4)/96+(x+5)/95
(=)(x+2)/98+1+(x+3)/97+1=(x+4)/96+1+(x+5)/95+1
(=)(x+100)/98+(x+100)/97=(x+100)/96+(x+100)/95
(=)(x+100)(1/98+1/97-1/96-1/95)=0
=)x+100=0
=)x=-100
Tìm x biết : (x-1)/ 99 + (x-2) /98 + (x-3) /97 + (x-4) /96 + (x-5) / 95 = 5
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}+\frac{x-5}{95}=5\)
\(\Rightarrow\left(\frac{x-1}{99}-1\right)+\left(\frac{x-2}{98}-1\right)+\left(\frac{x-3}{97}-1\right)+\left(\frac{x-4}{96}-1\right)+\left(\frac{x-5}{95}-1\right)\)\(=5-1-1-1-1-1\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}+\frac{x-100}{95}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}\right)=0\)
Mà \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x=100
Chúc bạn học tốt
Giai phương trình x-1/99+x-3/97+x-5/95= x-2/98+x-4/96+x-968/975+x-4/94
giup mình với
sửa đề đến đây thôi bạn nhé, do nếu thêm vào thì mình cũng ko biết có quy luật gì nữa :<
\(\dfrac{x-1}{99}-1+\dfrac{x-3}{97}-1+\dfrac{x-5}{95}-1=\dfrac{x-2}{98}-1+\dfrac{x-4}{96}-1\)
\(\Leftrightarrow\dfrac{x-100}{99}+\dfrac{x-100}{97}+\dfrac{x-100}{95}=\dfrac{x-100}{98}+\dfrac{x-100}{96}\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}-\dfrac{1}{98}-\dfrac{1}{96}\ne0\right)=0\Leftrightarrow x=100\)
Giải phương trình: (x+2/98)+(x+3/97)=(x+4/96)+(x+5/95)
\(\frac{x+2}{98}+\frac{x+3}{97}=\frac{x+4}{96}+\frac{x+5}{95}\)
\(\Leftrightarrow\frac{x+2}{98}+1+\frac{x+3}{97}+1=\frac{x+4}{96}+1+\frac{x+5}{95}+1\)
\(\Leftrightarrow\frac{x+2+98}{98}+\frac{x+3+97}{97}=\frac{x+4+96}{96}+\frac{x+5+95}{95}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{97}-\frac{x+100}{96}-\frac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)
=> x + 100 = 0
=> x = -100
Vậy x = -100
Tim x
x+1/99+x+2/98+x+3/97+x+4/96=-4
4x + (1/99+2/98+3/97 + 4/96)=-4
4x=-4 - (1/99+2/98+3/97 + 4/96)
4x=
Tìm x, biết:
a)2x+1/4 -x = x-1/5
b)x+4/96 + x+3/97 +2 = x+2/98 + x+5/95 + 2
\(\frac{2x+1}{4-x}=\frac{x-1}{5}\)
\(\Rightarrow\)\(5.\left(2x+1\right)=\left(4-x\right).\left(x-1\right)\)
\(\Rightarrow\)\(10x+5=2x-4\)
\(\Rightarrow\)\(10x-2x=-4-5\)
\(\Rightarrow\)\(8x=-9\)
\(\Rightarrow\)\(x=-\frac{9}{8}\)
Tìm x :
( 100 - 99 + 98 - 97 + 96 - 95 + .......+ 4 - 3 + 2 - 1 ) : 50 + 2010 - 12 x X = 91
(1+1+1+.............+1+1):50+2010-12xX=91
(1x50):50+2010-12xX
50:50+2010-12xX=91
1+2010-12xX=91
2011-12xX=91
12xX=2011-91
12xX=1920
x=1920:12
x=160
Tìm x biết: \(\frac{x+1}{98}+\frac{x+2}{97}=\frac{x+3}{96}=\frac{x+4}{95}\)
\(\frac{x+1}{98}+\frac{x+2}{97}=\frac{x+3}{96}+\frac{x+4}{95}\)
=> \(\left(\frac{x+1}{98}+1\right)+\left(\frac{x+2}{97}+1\right)=\left(\frac{x+3}{96}+1\right)+\left(\frac{x+4}{95}+1\right)\)
=> \(\frac{x+99}{98}+\frac{x+99}{97}-\frac{x+99}{96}-\frac{x+99}{95}=0\)
=> \(\left(x+99\right)\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
=> \(x+99=0\) (Vì: \(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\) )
=>\(x=-99\)
Ta có :
\(\frac{x+1}{98}+\frac{x+2}{97}=\frac{x+3}{96}+\frac{x+4}{95}\)
\(\Rightarrow\) \(\left(\frac{x+1}{98}+1\right)+\left(\frac{x+2}{97}+1\right)=\left(\frac{x+3}{96}+1\right)+\left(\frac{x+4}{95}+1\right)\)
\(\Rightarrow\frac{x+99}{98}+\frac{x+99}{97}=\frac{x+99}{96}+\frac{x+99}{95}\)
\(\Rightarrow\frac{x+99}{98}+\frac{x+99}{97}-\frac{x+99}{96}-\frac{x+99}{95}=0\)
\(\Rightarrow\left(x+99\right).\left(\frac{1}{98}+\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)
Vì \(\frac{1}{96}+\frac{1}{97}< \frac{1}{96}+\frac{1}{95}\)
\(\Rightarrow\) \(\frac{1}{96}+\frac{1}{97}< \frac{1}{96}+\frac{1}{95}\ne0\)
Nên \(x+99=0\)
\(\Rightarrow x=0-99\)
\(\Rightarrow x=-99\)
Vậy : \(x=-99\)