Cho a, b,c là độ dài 3 cạnh tam giác
CM \(ab+bc+ac\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\(ab+bc+ca\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì
Cho a,b,c là độ dài 3 cạnh của một tam giác.Chứng minh:\(ab+bc+ca\le a^2+b^2+c^2<2\left(ab+bc+ca\right)\)
Ta có :
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) (1)
Vì \(a,b,c\)là độ dài 3 cạnh của một tam giác nên ta có :
\(a^2< a.\left(b+c\right)\)
\(\Rightarrow a^2< ab+ac\)
Tương tự :
\(b^2< ab+bc\)
\(c^2< ca+bc\)
\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) (2)
Từ (1) và (2)
=> Đpcm
a, Cho a,b,c là độ dài ba cạnh của một tam giác. CMR,
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(10x^2+50y^2+42xy
+14x-6y+57< 0\)
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
mới lớp 7 a ới
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
SOS là ra, khá đơn giản. Ta có:
$$\text{VP}-\text{VT}=ab \left( -c+a \right) ^{2}+ca \left( b-c \right) ^{2}+cb \left( a-b
\right) ^{2}\geqq 0.$$
Đẳng thức xảy ra khi $a=b=c.$
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
a,b,c>0
\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)
Cho a,b,c là số đo 3 cạnh của 1 tam giác.CMR:
\(ab+ac+bc\le a^2+b^2+c^2=2\left(ab+ac+bc\right)\)
Cho a,b ,c là độ dài ba cạnh của tam giác . Chứng minh rằng :
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Ta có:
\(\left(a+b\right)^2\ge0\)
\(\Rightarrow a^2+2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\) (1).
\(\left(b+c\right)^2\ge0\)
\(\Rightarrow b^2+2bc+c^2\ge0\)
\(\Rightarrow b^2+c^2\ge2bc\) (2).
\(\left(c+a\right)^2\ge0\)
\(\Rightarrow c^2+2ca+a^2\ge0\)
\(\Rightarrow c^2+a^2\ge2ac\) (3).
Cộng theo vế (1), (2) và (3) ta được:
\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2\ge2.\left(ab+bc+ca\right)\)
\(\Rightarrow2.\left(a^2+b^2+c^2\right)\ge2.\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) (*).
Vì a, b, c là độ dài ba cạnh của tam giác (gt).
\(\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).
=> \(\left\{{}\begin{matrix}ac+bc>c^2\left(4\right)\\ab+ac>a^2\left(5\right)\\bc+ab>b^2\left(6\right)\end{matrix}\right.\)
Cộng theo vế (4), (5) và (6) ta được:
\(ac+bc+ab+ac+bc+ab>a^2+b^2+c^2\)
\(\Rightarrow2ab+2bc+2ac>a^2+b^2+c^2\)
\(\Rightarrow2.\left(ab+bc+ca\right)>a^2+b^2+c^2\) (**).
Từ (*) và (**) => \(ab+bc+ca\le a^2+b^2+c^2< 2.\left(ab+bc+ca\right)\left(đpcm\right).\)
Chúc bạn học tốt!
Theo BĐTBĐT tam giác ta có:
a<b+c
=>a2<ab+ac
b<c+a
=>b2<bc+ba
c<a+b
=>c2<ca+cb
Cộng vế với vế 3 BĐT trên ta được:
a2+b2+c2<2(ab+bc+ca)(1)
Ta có (a−b)2+(b−c)2+(c−a)2≥0 với mọi a,b,c là độ dài 3 cạnh của tam giác
<=>a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0
<=>2(a2+b2+c2)≥2(ab+bc+ca)
<=>ab+bc+ca≤a2+b2+c2(2)
Dấu = xảy ra khi a=b=c<=> tam giác đó đều
(1),(2)=>đpcm
cho 3 số thực dương a,b,c. chứng minh
\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)\(ab+bc+ca\le\frac{a^3\left(b+c\right)}{a^2+bc}+\frac{b^3\left(c+a\right)}{b^2+ca}+\frac{c^3\left(a+b\right)}{c^2+ab}\le a^2+b^2+c^2\)