Những câu hỏi liên quan
H24
Xem chi tiết
ZA
Xem chi tiết
TN
Xem chi tiết
LK
Xem chi tiết
DL
15 tháng 7 2016 lúc 8:14

A có : 100 - 2 + 1 = 99 thừa số.

Tất cả thừa số của A đều âm.

=> A < 0 < \(\frac{1}{2}\)

Bình luận (0)
BD
Xem chi tiết
H24
Xem chi tiết
tr
Xem chi tiết
H24
24 tháng 2 2019 lúc 11:20

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)

\(A=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)...\left(\frac{19}{19}-\frac{1}{19}\right)\left(\frac{20}{20}-\frac{1}{20}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}\)

\(A=\frac{1.2.3...18.19}{2.3.4...19.20}\)

\(A=\frac{1}{20}\Leftrightarrow A>\frac{1}{21}\)

Bình luận (0)
ZZ
24 tháng 2 2019 lúc 11:21

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}......\frac{19}{20}=\frac{1}{20}>\frac{1}{21}\)

\(\text{Vậy: A lớn hơn 1/21}\)

Bình luận (0)
LH
Xem chi tiết
SG
26 tháng 8 2016 lúc 18:40

A = 1/1×2 + 1/2×3 + 1/3×4 + .. + 1/99×100

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

A = 1 - 1/100 < 1

Bình luận (0)
PS
26 tháng 8 2016 lúc 18:46

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=1-\frac{1}{100}< 1\)

=>  ĐPCM

Bình luận (0)
LN
26 tháng 8 2016 lúc 18:46

Ta có:

A = 1/1 x 2 + 1/2 x 3 + 1/3 x 4 + ..... + 1/99 x 100 

A = 1- 1/2 + 1/2 - 1 /3 + 1/3 - 1/4 + ..... + 1/99 - 1/100 

A = 1 - 1/100 < 1 

nha bn 

chúc bn học giỏi

Bình luận (0)
PA
Xem chi tiết
TD
30 tháng 6 2017 lúc 15:33

Ta có : 

\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\) 

Bình luận (0)
TD
30 tháng 6 2017 lúc 15:40

\(T=1+\frac{3}{1.2^2}+\frac{4}{2.2^2}+\frac{5}{2^2.2^2}+...+\frac{2016}{2^{2013}.2^2}+\frac{2017}{2^{1014}.2^2}\)

\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{4}+\frac{6}{8}+...+\frac{2016}{x}+\frac{2017}{x}\right)\)

\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{2^2}+\frac{6}{2^3}+...+\frac{2016}{2^{2013}}+\frac{2017}{2^{2014}}\right)\)

Đến chỗ này chịu!

Bình luận (0)
H24
8 tháng 4 2018 lúc 20:17

Ta có

\(T=1+\frac{3}{1\cdot2^2}+\frac{4}{2\cdot2^2}+...+\frac{2017}{2^2\cdot2^{2014}}\) 

\(T=1+\frac{1}{2^2}\cdot\left(3+2+\frac{5}{2^2}+\frac{6}{2^3}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\right)\)

Bình luận (0)