\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{2017.2017}\)
Ta có :
\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4.4}< \frac{1}{3.4}\)
........
\(\frac{1}{2017.2017}< \frac{1}{2016.2017}\)
=> \(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{2017.2017}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2016.2017}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}< 1\)
=> A < 1
\(a=\frac{1}{2.2}+\frac{1}{3.3}+........+\frac{1}{2017.2017}\)
\(a< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2016.2017}\)
\(a< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2016}-\frac{1}{2017}\)
\(a< 1-\frac{1}{2017}\)
Do \(a< 1-\frac{1}{2017}\)
\(\Rightarrow a< 1\)