Chứng minh 1/1.6+1/6.11+1/11.16+...+1/(5n+1)(5n+6)=n+1/5n+6
Chứng minh rằng với mọi n thuộc N ta luôn có:
1/1.6 + 1/6.11 + 1/11.16 + ......+ 1/( 5n + 1) (5n + 6) = n+1/ 5n + 6
chứng tỏ rằng với mọi n thuộc N ta luôn có
\(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+....+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{5n+6-1}{5n+6}\)
\(=\dfrac{n+1}{5n+6}=VP\)
so sánh : A= 1/1.6+1/6.11+1/11.16+....+ 1/ (5n+1). (5n+6) với B= n+1/5n+6
Ta có : \(A=\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{(5n+1)(5n+6)}\)
\(=\frac{1}{5}\cdot\left[\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{5}{(5n+1)(5n+6)}\right]\)
\(=\frac{1}{5}\cdot\left[1-\frac{1}{5n+6}\right]=\frac{1}{5}\cdot\frac{5n+6-1}{5n+6}=\frac{1}{5}\cdot\frac{5(n+1)}{5n+6}=\frac{n+1}{5n+6}\)
\(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+....+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
C = 1/1.6+1/6.11+1/11.16+.....+1/(5n+1).(5n+6) n thuoc N
C = 1/1 . 6 + 1/6 . 11 + 1/11 . 16 + ...+ 1/( 5n + 1 ) . ( 5n + 6 )
C = 1/5 . ( 5/1 . 6 + 5/6 . 11 + 5/11 . 16 + ...+ 5/( 5n + 1 ) . ( 5n + 6 ) )
C = 1/5 . ( 1 - 1/6 + 1/6 - 1/11 + 1/11 - 1/16 + ...+ 1/5n + 1 - 1/5n + 6 )
C = 1/5 . ( 1 - 1/5n + 6 )
C = 1/5 . 1 - 1/5 . 1/5n + 6
C = 1/5 - 1/ 5 . ( 5n + 6 )
Chứng minh: 1/1.6+1/6.11+...+1/(5n+1)(5n+6)=n+1/5n+6
Lời giải:
$A=\frac{1}{1.6}+\frac{1}{6.11}+....+\frac{1}{(5n+1)(5n+6)}$
$5A=\frac{6-1}{1.6}+\frac{11-6}{6.11}+....+\frac{(5n+6)-(5n+1)}{(5n+1)(5n+6)}$
$5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{5n+1}-\frac{1}{5n+6}$
$=1-\frac{1}{5n+6}=\frac{5n+5}{5n+6}$
$\Rightarrow A=\frac{n+1}{5n+6}$
Chứng minh rằng với mọi n \(\in\) N ta luôn có:
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}=\frac{n+1}{5n+6}\)
Heo mi pờ lít
câu hỏi tương tự có đó bạn, bạn vào tham khảo nhe!
BT1:Chứng minh rằng với mọi n thuộc N ta luôn có: 1/1.6 + 1/6.11 + 1/11.16 + ... +1/(5n+1)(5n+6) = n+1/5n+6
BT 2 :Tìm x thuộc N biết: x - 20/11.13 - 20/13.15 - 20/15.17 - .... - 20/53.55 = 3/11
BT 3 : Tìm x thuộc N biết: 1/21 + 1/28 + 1/36 + ... + 2/x(x+1) = 2/9
mình trả lời bài 1 thôi nhé :
Gọi biểu thức trên là A.
Theo bài ra ta có:A=1/1.6+1/6.11+1/11.16+...+1/(5n+1)+1/(5n+6)
=1/5(1-1/6+1/6-1/11+1/11-1/16+...+1/5n+1-1/5n+6)
=1/5(1-1/5n+6)
=1/5( 5n+6/5n+6-1/5n+6)
=1/5(5n+6-1/5n+6)
=1/5.5n+5/5n+6
=n+1/5n+6
=ĐIỀU PHẢI CHỨNG MINH
x- 20/11.13 - 20/13.15 - 20/13.15 - 20/15.17 -...- 20/53.55=3/11
x-10.(2/11.13+2/13.15+2/15.17+...+2/53.55=3/11
x-10.(1/11-1/13+1/13-1/15+1/15-1/17+...+1/53-1/55)=3/11
x-10.(1/11-1/55)=3/11
x-10.4/55=3/11
x-8/11=3/11
x = 3/11+8/11
x=11/11=1
****