phân tích thành nhân tử
\(4x^3 -4x^2 -9x+9\)
\(x^3 +6x^2 +11x+6\)
\(x^2 y-x^3 -9y+9x\)
Phân tích đa thức thành nhân tử
a) x^3+5x^2+3x-9
b)x^3+6x^2+11x+6
c)x^3+5x^2-3x-15
d)3x^3-4x^2+12x-16
e)2x^4-9x^2-5
Phân tích đa thức sau thành nhân tử:
9x^2-9y^2-6x+1
Tìm x
a)4x^2(x-2016)-x+2016=0
b)x^2-5x+6=12
Bài 1:
\(=\left(3x-1\right)^2-9y^2\)
=(3x-1-3y)(3x-1+3y)
=(3x−1)2−9y2=(3x−1)2−9y2
=(3x-1-3y)(3x-1+3y)
Tham khảo ạ
Bài 1 :
=(3x−1)2−9y2=(3x−1)2−9y2
=(3x-1-3y)(3x-1+3y)
HT
Phân tích đa thức thành nhân tử: 1, x^3+2x^2-6x-27 2, 9x^2+6x-4y^2-4y 3, 12x^3+4x^2-27x-9
1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)
2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)
3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)
1) Ta có: \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
2: Ta có: \(9x^2+6x-4y^2-4y\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(3x+2y+2\right)\)
Phân tích các đa thức sau thành nhân tử:
a,x^2-4xy+4y^2
b,4x^4+9y^2-12x^2y
c,x^2-3xy+x-3y
d,x^3-x^2-5x+125
e,x^2-y^2+6x+9
f,x^3+3x^2-9x-27
g,x^2-4y^2+4y-1
h,x^4+3x^3-9x-9
i,8x^3-36x^2y+54xy^2-27y^3
Phân tích các đa thức sau thành nhân tử:
a,x^2-4xy+4y^2
b,4x^4+9y^2-12x^2y
c,x^2-3xy+x-3y
d,x^3-x^2-5x+125
e,x^2-y^2+6x+9
f,x^3+3x^2-9x-27
g,x^2-4y^2+4y-1
h,x^4+3x^3-9x-9
i,8x^3-36x^2y+54xy^2-27y^3
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử :
1) x^3 + 5x^2 + 3x - 9
2) x^3 + 9x^2 + 11x - 21
3) x^3 + 4x^2 - 7x - 10
4) x^5 - 5y^3 + 4x
5) 4x^4 - 21x^27^2 + y^4
chân thành cảm ơn ạ
mình cần gấp lắm
Phân tích các đa thức sau thành nhân tử
1) x^3+2x-3
2) x^3-6x+4
3) x^3-2x^2+1
4)x^3+5x^2-12
5) x^3-6x+9x
6) 4x^3-9x^2+5x
1) \(x^3+2x-3\)
\(=\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+3\right)\)
2) \(x^3-6x+4\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)-2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x-2\right)\)
3) \(x^3-2x^2+1\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)-\left(x-1\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x-1\right)\)
4) \(x^3+5x^2-12\)
\(=\left(x^3+2x^2\right)+\left(3x^2+6x\right)-\left(6x+12\right)\)
\(=x^2\left(x+2\right)+3x\left(x+2\right)-6\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+3x-6\right)\)
5) \(x^3-6x^2+9x\) (chắc đề như vậy)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)^2\)
6) \(4x^3-9x^2+5x\)
\(=x\left(4x^2-9x+5\right)\)
\(=x\left[\left(4x^2-4x\right)-\left(5x-5\right)\right]\)
\(=x\left[4x\left(x-1\right)-5\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(4x-5\right)\)
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
a 4x^3 - 13 x^2 + 9x - 18
b - x^3 - 6x^2 + 6x +1
c x^3 - 4x^2 - 8x + 8
a. \(=4x^3-12x^2-x^2+3x+6x-18=\left(x-3\right)\left(4x^2-x+6\right)\)
b. \(=-x^3+x^2-7x^2+7x-x+1=\left(x-1\right)\left(-x^2-7x-1\right)\)
c. \(=x^3+2x^2-6x^2-12x+4x+8=\left(x+2\right)\left(x^2-6x+4\right)\)
phân tích các đa thức sau thành nhân tử
a, 4x^4 + 4x^3 - x^2 - x
b, x^6 - x^4 - 9x^3 + 9x^2
c, x^4 - 4x^3 + 8x^2 - 16x + 16
a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)
\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)
c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)