1. Tìm x thuộc Z để \(\frac{4x-7}{2x+1}\)có giá trị nguyên
tìm x thuộc Z để M=4x +5 \ 2x +1 nhận giá trị nguyên
\(M=\frac{4x+5}{2x+1}=\frac{4x+2+3}{2x+1}=\frac{2\left(2x+1\right)+3}{2x+1}=\frac{2\left(2x+1\right)}{2x+1}+\frac{3}{2x+1}=2+\frac{3}{2x+1}\)
Để M là số nguyên thì \(\frac{3}{2x+1}\) là số nguyên
=>3 chia hết cho 2x+1
=>2x+1\(\inƯ\left(3\right)\)
=>2x+1\(\in\left\{-3;-1;1;3\right\}\)
=>2x\(\in\left\{-4;-2;0;2\right\}\)
=>x\(\in\left\{-2;-1;0;1\right\}\)
Cho A= 4x+1/2x+3,B=2x+5/2x-1
Tìm X thuộc z để
a,A và B là phân số
b,tìm x để A có giá trị là 1 số nguyên
Tìm x để A ,B đạt giá trị lớn nhất và bé nhất
Bài 1: Cho phân thức: A= 2x^2-4x+8/x^3+8
a) Rút gọn A
b) Tính giá trị của A, biết |x| = 2
c) Tìm x để A = 2
d) Tìm x để A < 0
e) Tìm x thuộc Z để A có giá trị nguyên
Bài 2: Cho B= x^2-4x+4/x^2-4
a) Rút gọn B
b) Tính giá trị của B, biết |x-1| = 2
c) Tìm x để B = -1
d) Tìm x để B < 1
e) Tìm x thuộc Z để B nhận giá trị nguyên
Bài 1 :
a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)
b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
TH1 : Thay x = 2 vào biểu thức trên ta được :
\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)
TH2 : Thay x = -2 vào biểu thức trên ta được :
\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí
c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)
\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)
Vậy với x = -1 thì A = 2
d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)
\(\Rightarrow x+2< 0\)do 2 > 0
\(\Leftrightarrow x< -2\)
Vậy với A < 0 thì x < -2
e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x + 2 | 1 | -1 | 2 | -2 |
x | -1 | -3 | 0 | -4 |
2.
ĐKXĐ : \(x\ne\pm2\)
a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)
Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)
Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)
Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3
c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)
<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)
d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)
e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)
Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }
Cho A=4x+1/2x+3, B=2x+5/2x-1
Tìm x thuộc z để
a, A và B là phân số
b, tìm x để A có giá trị là 1 số nguyên
c, tìm x để A và B đạt giá trị tuyệt đối lớn nhát và nhỏ nhất
Tìm x thuộc z để các phân số sau có giá trị là sos tự nhiên
a) 1-4x/2+2x
b) 4x+7/1-2x
c) 2x-6/3x+1
Tìm x thuộc z để biểu thức có giá trị nguyên E=\(\frac{2x-3}{1-3x}\)
THANKS NHA!
Cho \(E=\left(\frac{1}{x^2-x}+\frac{1}{1-x^2}+\frac{2x^2+2}{x^3-x}\right):\frac{x^2}{x^2-4x+4}\)
a, Rút gọn E
b, Tính giá trị của E biết \(x^2-2x=0\)
c, Tìm x thuộc z để giá trị của E là số nguyên
tìm x thuộc Z để
\(\frac{2x^2+1}{x+2}\) có giá trị nguyên
\(\frac{2x^2+1}{x+2}=\frac{2x^2+4x-4x-8+9}{x+2}=\frac{2x\left(x+2\right)-4\left(x+2\right)+9}{x+2}=2x-4+\frac{9}{x+2}\)
\(\Rightarrow x+2\inƯ\left(9\right)\Rightarrow x+2\in\left\{-9;-3;-1;1;3;9\right\}\Rightarrow x\in\left\{-11;-5;-3;-1;1;7\right\}\)
Cách 2:
\(\frac{2x^2+1}{x+2}=\frac{2\left(x^2-2^2\right)+9}{x+2}=\frac{2\left(x-2\right)\left(x+2\right)+9}{x+2}=2\left(x-1\right)+\frac{9}{x+2}\)
\(\Rightarrow x+2\inƯ\left(9\right)\Rightarrow x+2\in\left\{-9;-3;-1;1;3;9\right\}\Rightarrow x\in\left\{-11;-5;-3;-1;1;7\right\}\)
tìm x thuộc Z để
2x^2+1/x+2 có giá trị nguyên
\(\frac{2x^2+1}{x+2}\)\(\frac{2x^2+1}{x+2}\)
=> (2*x^3+2*x+1)/x
=> 2*x^3/(x+2)+4*x^2/(x+2)+1/(x+2)
=> 2*(x^2+1)