cho x+y=1 tìm giá trị nhỏ nhất của: a) A=x^2+y^2 b)B= 3-xy
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
b, ta có : \(x+y=1=>2x+2y=2\)
\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)
\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)
=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)
CHo x+y=1.Tìm giá trị nhỏ nhất của
A=x2+y2
B=3-xy
Đây chỉ nghĩ thôi nha
Ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\frac{1}{2}\ge\sqrt{xy}\)
\(\Leftrightarrow\frac{1}{4}\ge xy\)( dấu = xảy ra khi và chỉ khi x=y=1/2)
Mặt khác: \(x^2+y^2\ge2xy\ge2\cdot\frac{1}{4}=\frac{1}{2}\)
Vậy Min của \(x^2+y^2\)là 1/2 tại x=y=1/2
Câu b) Lấy cái trên câu a)
Ta có: \(\frac{1}{4}\ge xy\)
Suy ra: \(B=3-xy\ge3-\frac{1}{4}=\frac{11}{4}\)
Vậy min B=11/4
Cho x + y = 1 . Tìm giá trị nhỏ nhất của biểu thức :
a . A = xy + 2019
b. B = x^2 + y^2 + 2020
a) Cho x+y=1. Tìm giá trị nhỏ nhất của biểu thức A= \(x^2+y^2+x^3+y^3\)
b) Cho x+y+z =3. Tìm giá trị lớn nhất của B= xy +yz +xz
c) Cho x+2y =3 . Tìm GTNN của C = \(x+2y^2\)
d) Cho \(3x^2+y^2+2xy+4=7x+3y\)
a/ giá trị nhỏ nhất của A là 2
b/ giá trị lớn nhất của B là 51
tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm
Ta có: x + y = 1
<=> (x + y)3 = 1
<=> x3 + y3 + 3xy(x + y) = 1
<=> x3 + y3 + 3xy = 1 (do x + y = 1)
<=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x = y = 12
c/ GTNN của C là 5
d/ y = 12 , x = 12
1)cho a,b,c dương thỏa mãn abc=1
tìm giá trị nhỏ nhất của B=\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+a^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ca}\)
2) cho x,y,z dương
tìm giá trị nhỏ nhất của P=\(x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
Bài 1. cho x+y=1. tìm giá trị nhỏ nhất của B=x3+y3+x2+y2
Bài 2. cho x+y=6 và y lớn hơn hoặc bằng 4. tìm giá trị lớn nhất của P=xy
1/ B = (x+y)((x+y)2 - 3xy)+(x+y)2 - 2xy = 2 - 5xy = 2 - 5x(1-x)=5x2 - 5x + 2 = (x√5 - √5 /2)2 +3/4 >= 3/4
Đạt GTNN là 3/4 khi x=y=1/2
2/ P = xy = x(6-x)=-x2 +6x = 9 - (x-3)2 <=9
GTLN là 9 khi x=y=3
Cho x,y là các số thực thỏa mãn \(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}}\) Gọi A,B lần lượt là Giá trị nhỏ nhất và Giá trị lớn nhất của \(T=x^2+y^2-xy.\). Tìm giá trị của A+B
cho A = xy^2+ y^2(y^2 -x) +1 /x^2.y^4+2y^2+x^2 +2. Tìm giá trị của biến để A đạt giá trị nhỏ nhất
cho \(x,y,z\ge0\)thỏa mãn điều kiện x+y+z=a
a) tìm giá trị lớn nhất của A=xy+z+zx
b) tìm giá trị nhỏ nhất của B=x2+y2+x2
b,Ap dung bdt cauchy schwarz dang engel ta co
\(B=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}>=\frac{\left(x+y+z\right)^2}{3}=\frac{a^2}{3}\)
xay ra dau = khi x=y=z=a/3