a) Có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Dấu \(=\)xảy ra khi \(x=y=\frac{1}{2}\).
b)
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow-4xy\ge-\left(x+y\right)^2=-1\)
Suy ra \(B=3-xy\ge3-\frac{1}{4}=\frac{11}{4}\)
Dấu \(=\)xảy ra khi \(x=y=\frac{1}{2}\).