so sánh
\(\frac{12}{15}và\frac{-13}{-16}\)
Bài 1 : So sánh
\(\left(\frac{1}{10}\right)^{15}\) và \(\left(\frac{3}{10}\right)^{20}\)
Bài 2 : So sánh
A = \(\left(\frac{13^{15}+1}{13^{16}+1}\right)\) và B = \(\left(\frac{13^{16}+1}{13^{17}+1}\right)\)
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
so sánh \(\frac{13^{15}+1}{13^{16}+1};\frac{13^{16}+1}{13^{17}+1}\)
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S và \(\frac{1}{2}\)
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)
\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)
\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\)
Bài làm
Ta có:
\(\frac{1}{11}>\frac{1}{20}\), \(\frac{1}{12}>\frac{1}{20}\), \(\frac{1}{13}>\frac{1}{20}\), \(\frac{1}{14}>\frac{1}{20}\), \(\frac{1}{15}>\frac{1}{20}\), \(\frac{1}{16}>\frac{1}{20}\), \(\frac{1}{17}>\frac{1}{20}\), \(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)
=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)
hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)
=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)
Do đó: \(S=\frac{1}{2}\)
# Chúc bạn học tốt #
Ta có các phân số : \(\frac{1}{11};\frac{1}{12};\frac{1}{13};\frac{1}{14};\frac{1}{15};\frac{1}{16};\frac{1}{17};\frac{1}{18};\frac{1}{19}>\frac{1}{20}\)
Do đó : \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)có 10 phân số \(\frac{1}{20}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{10}{20}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{2}\)
Vậy : \(S>\frac{1}{2}\)
So sánh \(x=\frac{13^{16}+1}{13^{17}+1}\)và \(y=\frac{13^{15}+1}{13^{16}+1}\)
Áp dụng công thức:
Nếu a<b=>a/b<(a+k)/(b+k) (k thuộc N*)
Ta có:\(13^{16}+1x=\frac{13^{16}+1}{13^{17}+1}
Bn nhân cả x và y cho 13 nha
Ta có 10x=1+ 12 / 13^17+1 và 10 y= 1+12 / 13x^16+1
Do 12 / 13^17+1 < 12 / 13^16+1
=>10x<10y
=>x<y
So sánh
a, A = \(\frac{13^{15}+1}{13^{16}+1}\) và B = \(\frac{13^{16}+1}{13^{17}+1}\)
A=\(\frac{13^{15}+1}{13^{16}+1}\)
B=\(\frac{13^{16}+1}{13^{17}+1}\)
Hãy so sánh A và B
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=\frac{13^{16}+1+12}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=\frac{13^{17}+1+12}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Ta thấy:
\(13^{16}+1< 13^{17}+1\)
\(\Rightarrow\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
hay \(A>B\)
Vậy \(A>B.\)
Ta có: \(\frac{a}{b}< \frac{a+c}{b+c}\)
=> \(B=\frac{13^{16}+1}{13^{17}+1}< \frac{13^{16}+1+12}{13^{17}+1+12}=\frac{13^{16}+13}{13^{17}+13}=\frac{13\left(13^{15}+1\right)}{13\left(13^{16}+1\right)}=\frac{13^{15}+1}{13^{16}+1}=A\)
Vậy: \(A>B\)
So sánh
\(\frac{10}{11},\frac{12}{13},\frac{15}{16}\) \(\frac{-497}{496},\frac{-816}{815}\)
Ta có:
\(\frac{10}{11}+\frac{1}{11}=1\) \(\frac{15}{16}+\frac{1}{16}=1\)
\(\frac{12}{13}+\frac{1}{13}=1\)
Vì \(\frac{1}{11}>\frac{1}{13}>\frac{1}{16}\)\(\Rightarrow\frac{10}{11}< \frac{12}{13}< \frac{15}{16}\)
b.
Ta có: \(\frac{-497}{496}>\frac{-497}{815}>\frac{-816}{815}\)
\(\Rightarrow\frac{-497}{496}>\frac{-816}{815}\)
So sánh 2 phân số sau:\(\frac{-13}{14}\)và\(\frac{-15}{16}\)
\(\frac{-13}{14}>\frac{-15}{16}\)
A=\(\frac{13^{15}+1}{13^{16}+1}\)và B=\(\frac{13^{16}+1}{13^{17}+1}\)Hãy so sánh A và B.
Ta có: \(13A=1+\frac{12}{13^{16}+1};13B=1+\frac{12}{13^{17}+1}\)
Do \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\). Nên \(13A>13B\)
Vậy \(A>B\)