Những câu hỏi liên quan
NQ
Xem chi tiết
TL
18 tháng 3 2020 lúc 9:33

Đặt \(\hept{\begin{cases}n+1=a^2\\4n+29=b^2\end{cases}\left(a;b\inℕ\right)\Rightarrow\hept{\begin{cases}4n+4=4a^2\\4n+29=b^2\end{cases}}}\)

=> 4n+29-4n-4=b2-4a2

=> 25=(b-2a)(b+2a)

Vì a,b là số tự nhiên => \(\hept{\begin{cases}b-2a;b+2a\inℤ\\b-2a\le b+2a\end{cases}}\)

\(\Rightarrow\left(b-2a;b+2a\right)\inƯ\left(25\right)=\left\{\left(-25;-1\right);\left(-5;-5\right);\left(1;25\right);\left(5;5\right)\right\}\)

Lấy vế cộng vế ta được

\(2b\in\left\{-26;-10;26;10\right\}\)

\(\Rightarrow b\in\left\{-13;-5;13;5\right\}\)

Mà b là số tư nhiên nên b={13;5}

Với b=13

\(\Rightarrow4n+29=13^3=169\)

=> 4n=140

=> n=35 => n+1=36=62

Với b=5

=> \(4n+29=5^2=25\)

=> 4n=-4

=> n=-1

=> n+1=-1+1=0

Vậy với n={35;-1} thì n+1; 4n+29 là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
NB
Xem chi tiết
AH
9 tháng 9 2023 lúc 23:49

Lời giải:

Đặt tổng trên là $A$.

Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)

Xét $n\geq 2$. Khi đó:

$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$

$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$

Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.

Đặt $n=2k$ với $k$ nguyên dương.

Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý

Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.

 

Bình luận (0)
PL
Xem chi tiết
PL
30 tháng 1 2022 lúc 18:16

hello

Bình luận (0)
NB
Xem chi tiết
AH
10 tháng 9 2023 lúc 0:01

Bình luận (0)
TC
Xem chi tiết
XO
11 tháng 6 2021 lúc 15:18

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
ST
Xem chi tiết
TL
18 tháng 3 2020 lúc 9:36

Bạn tham khảo tại đây nhé!

Câu hỏi của Nguyễn Khắc Hoàng Quân - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NM
25 tháng 5 2021 lúc 11:05

Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1

=> 2n chia hết cho 8

=> n chia hết cho 4

=> n chẵn

=> 3n chẵn

=> 3n+1 lẻ

=> 3n+1 chia 8 dư 1

=> 3n chia hết cho 8

=> n chia hết cho 8    (1)

Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4

=> 3n chia 5 dư 4;3 hoặc chia hết cho 5

=> n chia 5 dư 3;1 hoặc chia hết cho 5

- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)

- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)

- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)

=> n chia hết cho 5   (2)

Từ (1) và (2) suy ra n chia hết cho 40

Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương

P/s: Vậy n=40 chỉ là số nguyên dương nhỏ nhất thỏa mãn đề bài

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
28 tháng 2 2021 lúc 11:32

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

Bình luận (1)
H24
28 tháng 2 2021 lúc 11:34

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

Bình luận (0)