KG

Tìm số nguyên dương \(n\) để \(n+1\) và \(4n+29\) là số chính phương.

LP
2 tháng 8 2023 lúc 9:23

 Đặt \(n+1=k^2\left(k\inℕ,k\ge2\right)\) (1) và \(4n+29=l^2\left(l\inℕ,l\ge6\right)\) (2)

(1) \(\Leftrightarrow4n+4=4k^2\) (3)

Từ (2) và (3) \(\Rightarrow l^2-4k^2=25\) \(\Leftrightarrow\left(l-2k\right)\left(l+2k\right)=25\)

Do \(l+2k>0\Rightarrow l-2k>0\). Lại có \(l-2k< l+2k\) nên ta có

\(\left\{{}\begin{matrix}l-2k=1\\l+2k=25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=6\\l=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n+1=36\\4n+29=169\end{matrix}\right.\) \(\Leftrightarrow n=35\) (thỏa)

Vậy \(n=35\) là số nguyên dương duy nhất thỏa mãn ycbt.

 

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
LD
Xem chi tiết
AD
Xem chi tiết
NP
Xem chi tiết
NQ
Xem chi tiết
BB
Xem chi tiết
NT
Xem chi tiết
KT
Xem chi tiết
H24
Xem chi tiết