5 mũ 5 - 5 mũ 4 + 5 mũ 3 chia hết cho 7
Chứng minh : A = 2mũ 1 + 2 mũ 2 + 2 mũ 3 + 2mũ 4 + ...+ 2 mũ 2010 chia hết cho 3&7
Chứng minh : C = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ....+ 2 mũ 2010 chia hết cho 4 và 13
Chứng minh : B = 5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.....+ 5 mũ 2010 chia hết cho 6 và 31
Chứng minh : D = 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + 7 mũ 4 +.....+ 7 mũ 2010 chia hết cho 8 và 57
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Giải:
A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010
A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_
A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3
A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3
A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)
A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7
A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.
Các câu còn lại làm tương tự như câu a nha bạn!
không tính tổng , hãy giải thích : a] 3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 chia hết cho 4
b] 5 mũ 5 + 5 mũ 6 + 5 mũ 7 + 5 mũ 8 chia hết cho 6
1/Chứng minh
a/Chứng minh A=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4+.....+2 mũ 2010 chia hết cho3 và 7
b/Chứng minh B=3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4+.....+3 mũ 2010 chia hết cho 4 và 13
c/Chứng minh C=5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4+ +5 mũ 2010 chia hết cho 6 và 31
d/Chứng minh D=7 mũ 1 + 7 mũ 2 +7 mũ 3 + 7 mũ 4 +.....+7 mũ 2010 chia hết cho 8 và 57
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
Câu 1 : tính : ( 2 - mũ 1 + 3 - mũ 1 ) : ( 2 - mũ 1 - 3 - mũ 1 ) + ( 2 mũ 1 . 2 mũ 0 ) : 2 mũ 3
Câu 2 :Chứng minh :
a> 7 mũ 6 + 7 mũ 5 - 7 mũ 4 chia hết cho 55
b 16 mũ 5 + 2 mũ 15 chia hết cho 33
c> 81 mũ 7 - 27 mũ 9 - 9 mũ 17 chia hết cho 405
Câu 3 : Rút gọn :
A = 1 + 5 + 5 mũ 2 + 5 mũ 3 + ..... + 5 mũ 49 + 5 mũ 50
Giải luôn bây giờ nhé trong tối nay bạn nào làm đúng tích hết cho nhé . thanks
Câu 3 = (5 mũ 51 - 1) : 4
5 mũ 4 - 5 mũ 4 - 5 mũ 3 chia hết cho 7
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
Làm giúp e nhanh lên nha ! E khẩn cấp lắm ồi
b: \(B=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)⋮8\)
c: \(C=4^{39}\left(1+4+4^2\right)=4^{39}\cdot21=4^{38}\cdot84⋮28\)
bài 1 cho S = 5+ 5 mũ 2 +5 mũ 3 +.... + 5 mũ 2005 +5 mũ 2006 chứng minh S chia hết cho 126
bài 2: cho S = 7+7 mũ 3 + 7 mũ 5 + 7 mũ 1997 + 7 mũ 1999
chứng minh S chia hết cho 35
1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)
= (5+52+..........+52003).126 ->S chia hết cho 126
2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)
= (7+...............+71997).50-> chia hết cho 5
= 7(1+72+.......+71998) -> chia hết cho 7
-> chia hết cho 35
chứng tỏ rằng : 5 mũ 5 - 5 mũ 4 + 5 mũ 3 chia hết cho 7
\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=\)
\(=5^3.21⋮7\)
Ta có: 55 - 54 + 53
= 53 (52 - 5 + 1)
= 53 . 21
Vì 21 chia hết cho 7 nên 53 . 21 chia hết cho 7
hay 55 - 54 + 53 chia hết cho 7
55 - 54 + 53
= 53 . ( 52 - 5 ) + 53
= 125 . ( 25 - 5 ) + 125
= 125 . 20 + 125
= 125 . ( 20 + 1 )
= 125 . 21
Vì 21 ⁝ 7 => 125 . 21 ⁝ 7 => 55 - 54 + 53 ⁝ 7