Những câu hỏi liên quan
DM
Xem chi tiết
DH
25 tháng 8 2021 lúc 16:08

\(A=\frac{5}{2.5}+\frac{5}{5.8}+\frac{5}{8.11}+...+\frac{5}{47.50}\)

\(=\frac{5}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{47.50}\right)\)

\(=\frac{5}{3}\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{50-47}{47.50}\right)\)

\(=\frac{5}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{47}-\frac{1}{50}\right)\)

\(=\frac{5}{3}\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(=\frac{4}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
TH
Xem chi tiết
TV
Xem chi tiết
H24

Q=(-1)+(-3)+(-5)+...+(-99)

 Dãy số trên là dãy số cách đều -4 đơn vị và có 51 số hạng.

\(\Rightarrow\) Q = [ -99 + ( -1) . 51 : 2 = -2550

Vậy Q= -2500

S= \(\dfrac{1}{2.5}\) + \(\dfrac{1}{5.8}\) + \(\dfrac{1}{8.10}\) + ... + \(\dfrac{1}{47.50}\) 

S=  \(\dfrac{1}{3}\) . ( \(\dfrac{3}{2.5}\) + \(\dfrac{3}{5.8}\) + ... + \(\dfrac{3}{47.50}\) )

S=  \(\dfrac{1}{3}\) . ( \(\dfrac{1}{2}\) - \(\dfrac{1}{50}\) )

S = \(\dfrac{1}{3}\) . \(\dfrac{12}{25}\)

S= \(\dfrac{4}{25}\)

Vậy S = \(\dfrac{4}{25}\)

Bình luận (0)
BN
Xem chi tiết
TV
30 tháng 3 2018 lúc 21:47

a) \(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+.......+\frac{6}{44.47}+\frac{6}{47.50}\)

\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+......+\frac{3}{44.47}+\frac{3}{47.50}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{44}-\frac{1}{47}+\frac{1}{47}-\frac{1}{50}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{50}\right)\)

\(=1-\frac{1}{25}\)

\(=\frac{24}{25}\)

Bình luận (0)
TV
30 tháng 3 2018 lúc 21:53

đặt \(A=\frac{1}{9.11}+\frac{1}{11.13}+........+\frac{1}{41.43}+\frac{1}{43.45}\)

\(2A=\frac{2}{9.11}+\frac{2}{11.13}+.......+\frac{2}{41.43}+\frac{2}{43.45}\)

\(2A=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+......+\frac{1}{41}-\frac{1}{43}+\frac{1}{43}-\frac{1}{45}\)

\(2A=\frac{1}{9}-\frac{1}{45}\)

\(2A=\frac{4}{45}\)

\(A=\frac{4}{45}\div2\)

\(A=\frac{2}{45}\)

Bình luận (0)
DA
Xem chi tiết
YV
9 tháng 3 2016 lúc 12:50

Ta có: 3S = 3/2.5 + 3/5.8 + ... + 3/47.50

           3S = 1/2 - 1/5 + 1/5 - 1/8 + ... +1/47 - 1/50

           3S = 1/2 - 1/50

           3S = 12/25

           => S = 12/25 : 3 = 4/25 

Bình luận (0)
ML
9 tháng 3 2016 lúc 12:52

k, đây là dạng toán sai phân hữu hạn. 
----------- 
số hạng tổng quát là 1/[n.(n+3)] = (1/3).[(n+3)-n]/[n.(n+3)] = (1/3). [1/n - 1/(n+3)] 
=> 
A = (1/3).[(1/2 - 1/5) + (1/5 - 1/8) + (1/8 - 1/11) +...+(1/44 - 1/47) + (1/47 - 1/50)] 
= (1/3).[1/2 - 1/50] 
= (1/3). (24/50) = (1/3).(12/25) = 4/25 
vậy A = 4/25 
--------- 
good luck!

Bình luận (0)
ND
Xem chi tiết
VP
25 tháng 8 2023 lúc 10:45

Sửa đề:

\(A=\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)

\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)

\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\)

\(A=4.\left(\dfrac{34}{68}-\dfrac{1}{68}\right)\)

\(A=4.\dfrac{33}{68}\)

\(A=\dfrac{33}{17}\)

Bình luận (0)
NH
25 tháng 8 2023 lúc 10:51

A = \(\dfrac{4}{2.5}\) + \(\dfrac{4}{5.8}\)\(\dfrac{4}{8.11}\)+...+ \(\dfrac{4}{65.68}\)

A = \(\dfrac{4}{3}\).( \(\dfrac{3}{2.5}\) + \(\dfrac{3}{5.8}\)\(\dfrac{3}{8.11}\)+....+ \(\dfrac{3}{65.68}\))

A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{65}\)\(\dfrac{1}{68}\)

A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{68}\))

A = \(\dfrac{4}{3}\)\(\dfrac{33}{68}\)

A = \(\dfrac{11}{17}\)

Bình luận (0)
VP
25 tháng 8 2023 lúc 10:42

bạn kiểm tra lại đề nhé.

Bình luận (0)
BB
Xem chi tiết
NT
24 tháng 7 2021 lúc 21:18

Ta có: \(A=\dfrac{4}{2\cdot5}+\dfrac{4}{5\cdot8}+...+\dfrac{4}{65\cdot68}\)

\(=\dfrac{4}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{65\cdot68}\right)\)

\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)

\(=\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\)

\(=\dfrac{4}{3}\cdot\dfrac{33}{68}=\dfrac{11}{17}\)

Bình luận (1)
PT
Xem chi tiết
ND
3 tháng 8 2016 lúc 21:14

\(\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{47.50}\)

\(\Rightarrow\frac{4}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{47.50}\right)\)

\(\Rightarrow\frac{4}{3}\left(\frac{1}{5}-\frac{1}{8}+...+\frac{1}{47}-\frac{1}{50}\right)\)

\(\Rightarrow\frac{4}{3}\left(\frac{1}{5}-\frac{1}{50}\right)\)

\(\Rightarrow\frac{4}{3}.\frac{9}{50}=\frac{6}{25}\)

Bình luận (0)