Những câu hỏi liên quan
TT
Xem chi tiết
NT
Xem chi tiết
FT
16 tháng 12 2021 lúc 15:54

D=m2-4mp+5p2+10m-22p+20

    =m2-4mp+4p2+p2+10m-20p-2p+1+19

    =(m2-4mp+4p2)+(10m-20p)+(p2-2p+1)+19

    =(m-2p)2+10(m-2p)+(p-1)2+25-6

    

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
LF
28 tháng 7 2017 lúc 21:35

\(m^2+5p^2=4mp-10m+22p+25\)

\(\Leftrightarrow m^2+5p^2-4mp+10m-22p-25=0\)

\(\Leftrightarrow\left(m^2-4mp+10m+4p^2-20p+25\right)+\left(p^2-2p+1\right)-51=0\)

\(\Leftrightarrow\left(m-2p+5\right)^2+\left(p-1\right)^2-51=0\)

Dễ thấy: \(\left\{{}\begin{matrix}\left(m-2p+5\right)^2\ge0\\\left(p-1\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(m-2p+5\right)^2+\left(p-1\right)^2\ge0\)

\(\Rightarrow\left(m-2p+5\right)^2+\left(p-1\right)^2-51\ge-51\)

Xảy ra khi \(\left\{{}\begin{matrix}m-2p+5=0\\p-1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\p=1\end{matrix}\right.\)

Bình luận (0)
TN
28 tháng 7 2017 lúc 21:11

Hình như là nhầm đề mình chỉ tìm được \(m\leq14\)

Bình luận (1)
PH
28 tháng 7 2017 lúc 21:12

Mình cũng nghĩ thế. Bạn giải thử lại rõ ràng đi

Bình luận (0)
HA
Xem chi tiết
TD
11 tháng 6 2015 lúc 8:10

A = \(\left(m^2-4mp+4p^2\right)+10\left(m-2p\right)+25+\left(p^2-2p+1\right)+2\)

  \(=\left(m-2p\right)^2+2.5.\left(m-2p\right)+5^2+\left(p-1\right)^2+2\)

  \(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)

Vậy: A min = 2 \(\Leftrightarrow m=-3;p=1\)

Bình luận (0)
PA
Xem chi tiết
CM
4 tháng 4 2016 lúc 20:22

 A = (m2 -4mp + 4p2 ) + (p2 -2p + 1) + 27 + 10m - 20p = (m-2p)2 + (p-1)2 27 + 10(m-2p)

Đặt X = m-2p.

Ta có A=x2 + 10X + 27 + (p-1)2 = (X2 + 10X + 25) + (p-1)2 + 2 = (X+5)2 + (p-1)2 + 2

Ta thấy: (X + 5)^2> 0 với m, p; (p-1)^2> 0 p Do đó: A đạt giá trị nhỏ nhất khi: Vậy Min A=2 khi m=-3; p=1

Có bài số ko hỏi tớ-_-

Bình luận (0)
CN
Xem chi tiết
YN
13 tháng 12 2021 lúc 0:20

Answer:

\(D=m^2-4mp+5p^2+10m-22p+20\)

\(=m^2-4mp+4p^2+p^2+10m-20p-2p+1+19\)

\(=\left(m^2-4mp+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+19\)

\(=\left(m-2p\right)^2+10\left(m-2p\right)+\left(p-1\right)^2+25-6\)

\(=[\left(m-2p\right)^2+10\left(m-2p\right)+25]+\left(p-1\right)^2-6\)

\(=\left(m-2p+5\right)^2+\left(p-1\right)^2-6\)

\(\forall m;p\) có \(\left(m-2p+5\right)^2+\left(p-1\right)^2-6\ge-6\) hay \(D\ge-6\)

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(m-2p+5\right)^2=0\\\left(p-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}m-2p+5=0\\p-1=0\end{cases}}\Rightarrow\hept{\begin{cases}m-2p+5=0\\p=1\end{cases}}\Rightarrow\hept{\begin{cases}m-2.1+5=0\\p=1\end{cases}}\Rightarrow\hept{\begin{cases}m=-3\\p=1\end{cases}}\)

Vậy giá trị nhỏ nhất của biểu thức \(D=-6\) khi \(\hept{\begin{cases}m=-3\\p=1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
TK
Xem chi tiết
H24
Xem chi tiết
VT
24 tháng 3 2017 lúc 20:10

a ) \(P\left(x\right)=3x^2-27x+54=3\left(x^2-9x+15\right)\)

\(=3\left[\left(x^2-3x\right)-\left(6x-18\right)\right]=3\left[x\left(x-3\right)-6\left(x-3\right)\right].\)

\(\Rightarrow P\left(x\right)=3\left(x-3\right)\left(x-6\right)\)

Ta có : \(P\left(x\right)\ge0\Leftrightarrow\left(x-3\right)\left(x-6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x-6\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\x-6\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge6\\x\le3\end{matrix}\right.\)

Vậy \(P\left(x\right)\ge0\Leftrightarrow x\le3\) hoặc \(x\ge6\)

b ) \(A=m^2-4mp+5p^2+10m-22p+28\)

\(=m^2-4mp+4p^2+10m-20p+p^2-2p+1+27\)

\(=\left(m-2p\right)^2+10\left(m-2p\right)+\left(p-1\right)^2+25+2\)

\(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)

Vậy GTNN của A là 2 khi và chỉ khi \(\left\{{}\begin{matrix}p-1=0\\m-2p+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}p=1\\m=-3\end{matrix}\right..\)

Vậy ...............

\(=3\left[\left(x^2-3x\right)-\left(6x-18\right)\right]=3\left[x\left(x-3\right)-6\left(x-3\right)\right]\)

Bình luận (0)
TK
Xem chi tiết