Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Ôn tập toán 8

H24

a ) Phân tích đa thức sau thành nhân tử : P (x ) = 3x^2-27x+54

Với giá trị nào thì P (x) nhận giá trị không âm ?

b ) Tìm m và p sao cho biểu thức : A = m^2-4mp+5p^2+10m-22p+28 đạt GTNN . Tính giá trị ấy ?

VT
24 tháng 3 2017 lúc 20:10

a ) \(P\left(x\right)=3x^2-27x+54=3\left(x^2-9x+15\right)\)

\(=3\left[\left(x^2-3x\right)-\left(6x-18\right)\right]=3\left[x\left(x-3\right)-6\left(x-3\right)\right].\)

\(\Rightarrow P\left(x\right)=3\left(x-3\right)\left(x-6\right)\)

Ta có : \(P\left(x\right)\ge0\Leftrightarrow\left(x-3\right)\left(x-6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x-6\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\x-6\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge6\\x\le3\end{matrix}\right.\)

Vậy \(P\left(x\right)\ge0\Leftrightarrow x\le3\) hoặc \(x\ge6\)

b ) \(A=m^2-4mp+5p^2+10m-22p+28\)

\(=m^2-4mp+4p^2+10m-20p+p^2-2p+1+27\)

\(=\left(m-2p\right)^2+10\left(m-2p\right)+\left(p-1\right)^2+25+2\)

\(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)

Vậy GTNN của A là 2 khi và chỉ khi \(\left\{{}\begin{matrix}p-1=0\\m-2p+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}p=1\\m=-3\end{matrix}\right..\)

Vậy ...............

\(=3\left[\left(x^2-3x\right)-\left(6x-18\right)\right]=3\left[x\left(x-3\right)-6\left(x-3\right)\right]\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
AH
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
BI
Xem chi tiết
HC
Xem chi tiết