Những câu hỏi liên quan
DH
Xem chi tiết
NL
Xem chi tiết
NM
28 tháng 12 2016 lúc 9:00

\(=-\frac{3a+\left(a-b\right)}{3a+5}-\frac{2b-\left(a-b\right)}{2b-5}=-\frac{3a+5}{3a+5}-\frac{2b-5}{2b-5}=-1-1=-2\)

Bình luận (0)
NL
28 tháng 12 2016 lúc 21:52

cảm ơn bạn nhé

Bình luận (0)
H24
Xem chi tiết
MD
30 tháng 12 2016 lúc 18:16

ta có \(a-b=5\) \(\Rightarrow a=b+5;b=a-5\)

\(\Rightarrow-\frac{4a-b}{3a+5}-\frac{3b-a}{2b-5}\)

\(=-\frac{4a-\left(a-5\right)}{3a+5}-\frac{3b-\left(b+5\right)}{2b-5}\)

\(=-\frac{4a-a+5}{3a+5}-\frac{3b-b-5}{2b-5}\)

\(=-\frac{3a+5}{3a+5}-\frac{2b-5}{2b-5}=-1-1=-2\)

Bình luận (0)
KS
Xem chi tiết
KT
8 tháng 5 2018 lúc 21:01

cách khác:

\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{3a-2b}{2a+a-2b}+\frac{3b-a}{b-a+2b}\)  (thay 5 = a - 2b)

\(=\frac{3a-2b}{3a-2b}+\frac{3b-a}{3b-a}\)

\(=1+1=2\)

Bình luận (0)
NM
8 tháng 5 2018 lúc 11:56

Biết a - 2b = 5 tính giá trị biểu thức:

\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{2a+\left(a-2b\right)}{2a+5}+\frac{3b-a}{b-5}\)

\(=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)

\(=1+1=2\)

Vậy B = 2

Bình luận (0)
CV
Xem chi tiết
NQ
9 tháng 1 2018 lúc 20:43

a-2b=5 => a=2b+5

Thay a=2b+5 vào B thì : 

B = 6b+15-2b/4b+10+5 + 3b-2b-5/b-5

   = 4b+15/4b+15 + b-5/b-5 = 1+1 = 2

Tk mk nha

Bình luận (0)
TD
9 tháng 1 2018 lúc 20:44

Ta có : a - 2b = 5 \(\Rightarrow\)2b = a - 5

          a - 2b = 5 \(\Rightarrow\)a = 2b + 5

Thay vào , ta được :

\(B=\frac{3a-\left(a-5\right)}{2a+5}+\frac{3b-\left(2b+5\right)}{b-5}\)

\(B=\frac{3a-a+5}{2a+5}+\frac{3b-2b-5}{b-5}\)

\(B=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)

\(B=1+1=2\)

Bình luận (0)
H24
9 tháng 1 2018 lúc 20:50

\(B=\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}\)

\(B=\frac{2a+\left(a-2b\right)}{2a+5}+\frac{b-\left(a-2b\right)}{b-5}\)

\(B=\frac{2a+5}{2a+5}+\frac{b-5}{b-5}\)

\(B=1+1=2\)

Vậy 

Bình luận (0)
TN
Xem chi tiết
LF
3 tháng 12 2016 lúc 20:53

Từ \(a-2b=5\Rightarrow a=5+2b\) thay vào P ta có:

\(P=\frac{3\left(2b+5\right)-2b}{2\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b+5}{b-5}\)

\(=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)

Bình luận (0)
MH
Xem chi tiết
TA
20 tháng 7 2017 lúc 15:32

Từ a-2b=5  =>  a = 2b+5 

Thay 2b + 5 vào a, ta có biểu thức  :

\(\frac{3a-2b}{2a+5}+\frac{3b-a}{b-5}=\frac{3.\left(2b+5\right)-2b}{2.\left(2b+5\right)+5}+\frac{3b-\left(2b+5\right)}{b-5}\)

\(=\frac{6b+15-2b}{4b+10+5}+\frac{3b-2b-5}{b-5}=\frac{4b+15}{4b+15}+\frac{b-5}{b-5}=1+1=2\)

Bình luận (0)
VC
19 tháng 7 2017 lúc 23:25

thay a-2b vào biểu thức cần tính

Bình luận (0)
VC
19 tháng 7 2017 lúc 23:26

thay a-2b vào biểu thức cần tính

Bình luận (0)
HH
Xem chi tiết
YN
8 tháng 4 2022 lúc 21:18

`Answer:`

a. Ta có: \(\frac{a}{b}=\frac{1}{3}\Rightarrow\frac{a}{1}=\frac{b}{3}\)

Đặt \(k=\frac{a}{1}=\frac{b}{3}\Rightarrow\hept{\begin{cases}a=k\\b=3k\end{cases}}\)

\(E=\frac{3a+2b}{4a-3b}\)

\(=\frac{3k+2.3k}{4k-3.3k}\)

\(=\frac{3k+6k}{4k-9k}\)

\(=\frac{9k}{-5k}\)

\(=-\frac{9}{5}\)

b. Thay `a-b=5` vào biểu thức `F`, ta được:

\(F=\frac{3a-\left(a-b\right)}{2a+b}-\frac{4b+\left(a-b\right)}{a+3b}\)

\(=\frac{3a-a+b}{2a+b}-\frac{4b+a-b}{a+3b}\)

\(=\frac{2a+b}{2a+b}-\frac{3b+a}{a+3b}\)

\(=1+1\)

\(=0\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết