Tìm tất cả các số nguyên x, y thỏa mãn phương trình x ^ 2 - 2xy - 3y ^ 2 = 3x - y + 2
1, Tìm tất cả các số nguyên x, y thỏa mãn phương trình 2x ^ 2 + y ^ 2 + 3xy - 3x - 3y + 11 = 0
Tìm tất cả các cặp số nguyên (x, y) thỏa mãn phương trình:
\(xy^2+3x-3xy+2=x^3+3y^2-9y\)
Tìm tất cả các số nguyên dương (x;y) thỏa mãn phương trình xy2 + 2xy -243y +x =0
2) Ta có:
xy2 + 2xy -243y +x = 0
x( y2 + 2y + 1) -243y = 0
x(y+1)2 = 243y
x = 243y(y+1)2
Vì x thuộc Z nên 243y(y+1)2 thuộc Z, mà Ư CLN(y,y+1) = 1 243 chia hết (y+1)2
(y+1)2 thuộc {9; 81}
y+1 thuộc {3; -3; 9; -9}
y thuộc {2; -4; 8; -10}
x thuộc {54; -108; 24; -30}
Vậy (x; y) = (54; 2) (24; 8) (-108;-4) (-30;-10)
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn\(2y^2+2xy+x+3y-13=0\)
\(2y^2+2xy+x+3y-13=0\)
\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)
\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)
\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)
Rồi bạn làm từng cặp ra nhé!
1. Tìm nghiệm nguyên của phương trình:
\(x^2+2y^2-2xy+3x-3y+2=0\)
2. Tìm tất cả các số nguyên x,y thõa mãn phương trình
\(xy^3+y^2+4xy=6\)
3.Tìm nghiệm nguyên dương của phương trình
\(x^2+\left(x+y\right)^2=\left(x+9\right)^2\)
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
1)
f(x) =x^2 -(2y -3)x +2y^2 -3y+2 =0
cần x nguyên
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
<=> 4y^2 -12y +9 -8y^2 +12y -8 =k^2
<=> -4y^2 +1 =k^2
<=> k^2 +4y^2 =1
=> y=0
với y =0 => x =-1 ; x =-2
kết luận
(x,y) =(-1;0) ; (-2;0)
2)
<=> y(xy^2 +y+4x) =6
xét g(y) =xy^2 +y+4x phải nguyên
=> $\Delta$ (y) =1 -16x^2 =k^2
k^2 +16x^2 =1
x nguyên => x =0 duy nhất
với x = 0
f(y) = y^2 =6 => vô nghiệm nguyên
<=> y(xy^2 +y+4x) =16
hệ nghiệm nguyên
y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16} (1)
xy^2 +y+4x ={-1,-2,-4,-8,-16,16,8,4,2, 1} (2)
từ (2) <=>xy^2 +y+4x =a
với a ={-1,-2,-4,-8,-16,16,8,4,2,1} tương ứng y ={-16, -8,-4,-2,-1 ,1 ,2 ,4,8,16}
x =`$\frac{a-y}{y^2 +4}$`
a-y = { 15 , 6, 0, -6,-15,15, 6, 0, -6,-15 }
y^2 +4 = { 260,68, 20, 8, 5, 5, 8,20, 68,260 }
a-y=0 hoặc cần |a-y| >= y^2 +4
=> có các giá tri x nguyên
x ={0, -3,3,0}
y ={-4,-1,1,4}
kết luận nghiệm
(x,y) =(0,-4) ; (-3;-1) ;(3;1); (0;4)
tìm tất cả các số nguyên x; y;z thỏa mãn phương trình
3x2+6y2 +2z2+3y2z2-18x-6=0
Dễ thấy \(z^2\)chia hết cho 3 \(\Rightarrow z⋮3\Rightarrow z^2⋮9\)
* Xét \(z^2=0\), ta có \(3x^2+6y^2-18x-6=0\)
\(\Leftrightarrow3\left(x-3\right)^2+6y^2=33\Leftrightarrow\left(x-3\right)^2+2y^2=11\)
\(2y^2\le11\Rightarrow y^2\le2^2\Rightarrow y^2=0^2;1^2;2^2\)
\(+y^2=0^2\Rightarrow\left(x-3\right)^2=11\)(vô lí)
\(+y^2=1^2\Rightarrow\left(x-3\right)^2=3^2\Rightarrow x-3=\pm3\)
\(\Rightarrow x=6\)hoặc \(x=0\)
Có các nghiệm \(\left(x=6;y=1;z=0\right)\) \(\left(x=6;y=-1;z=0\right)\)
\(\left(x=0;y=1;z=0\right)\) \(\left(x=0;y=-1;z=0\right)\)
\(+y^2=2^2\Rightarrow\left(x-3\right)^2=3\)( vô lí)
* Xét \(z^2\ge9\) ta có: \(3x^2+6y^2+2z^2+3y^2z^2-18x-6=0\)
\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)
\(+y^2\ge1\)thì \(2z^2+3y^2z^2\ge2.9+3.1.9>33\)(loại)
\(+y^2=0\)thì \(3\left(x-3\right)^2+2z=33\)
\(z^2=9\)thì \(3\left(x-3\right)^2=15\)(loại)
\(z^2>9\Rightarrow z^2\ge6^2=36\)
Ta có \(3\left(x-3\right)^2+2z^2>33\)(loại)
Nghiệm nguyên của ptrình là:
\(\left(x=6;y=1;z=0\right)\) \(\left(x=6;y=-1;z=0\right)\)
\(\left(x=0;y=1;z=0\right)\) \(\left(x=0;y=-1;z=0\right)\)
Tìm tất cả các số nguyên dương x,y,z thỏa mãn phương trình:
\(x^6+y^6+15y^4+z^3+75y^2=3x^2y^2z+15x^2z-125\)
\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)
\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)
Ta có:
\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)
Đẳng thức xảy ra khi và chỉ khi:
\(x^2=y^2+5=z\)
Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)
\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)
Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:
\(\left(x;y;z\right)=\left(3;2;9\right)\)
Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho
Tìm tất cả các số nguyên x và y thỏa mãn phương trình 3(x^2+xy+y^2)=x+8y