Những câu hỏi liên quan
WY
Xem chi tiết
DN
Xem chi tiết
DN
19 tháng 8 2016 lúc 13:16

giúp mk vs 

Bình luận (0)
DN
19 tháng 8 2016 lúc 14:11

gúp mk đi mk cho

Bình luận (0)
PL
Xem chi tiết
LC
6 tháng 7 2015 lúc 15:42

\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}=>\frac{2014.a}{2014c}=\frac{2015b}{2015d}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{2014a}{2014c}=\frac{2015b}{2015d}=\frac{2014a-2015b}{2014c-2015d}=\frac{2014a+2015b}{2014c+2015d}\)

=>\(\frac{2014a-2015b}{2014c-2015d}=\frac{2014a+2015b}{2014c+2015d}\)

=> (2014a-2015b).(2014c+2015d)=(2014c-2015d).(2014a+2015b)

=>\(\frac{2014a-2015b}{2014a+2015b}=\frac{2014c-2015d}{2014c+2015d}\)

Bình luận (0)
H24
Xem chi tiết
YL
24 tháng 10 2021 lúc 21:47

Gạevdhbdvd

Bình luận (1)
YL
24 tháng 10 2021 lúc 21:47

Gkykdyhlculxys

Bình luận (3)
TP
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
H24
29 tháng 4 2019 lúc 22:05

Ta có : \(\frac{2014a^2+b^2+c^2}{a^2}=\frac{a^2+2014b^2+c^2}{b^2}=\frac{a^2+b^2+2014c^2}{c^2}\)

\(\Rightarrow\) \(2014+\frac{b^2+c^2}{a^2}=2014+\frac{a^2+c^2}{b^2}=2014+\frac{a^2+b^2}{c^2}\)

\(\Rightarrow\) \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}=\frac{2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=2\) (Vì \(a^2+b^2+c^2\ne0\))

Suy ra: \(\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{b^2}+\frac{c^2}{b^2}=\frac{a^2}{c^2}+\frac{b^2}{c^2}=2\)

\(\Rightarrow\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{c^2}=2+2+2=6\)

\(\Rightarrow\) \(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}=\frac{6}{2}=3\)

Lại có: \(P=\)\(\frac{2015a^2+b^2}{c^2}+\frac{2015a^2+c^2}{b^2}+\frac{2015b^2+c^2}{a^2}\)

\(=2015\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\right)\)

\(=\left(2015+1\right)\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)\)

\(=2016\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)\)

\(=2016.3=6048\)

Vậy \(P=6048\)

Bình luận (0)
XX
Xem chi tiết
HN
4 tháng 1 2017 lúc 20:59

mik không hiểu đề bài câu 1) cho lắm ..cko mik xin cái hình câu 1) đk k ạ .

Bình luận (1)
CA
11 tháng 1 2017 lúc 21:00

phải có hình chứ

Bình luận (0)
XX
15 tháng 3 2017 lúc 8:24

sao ko ai zải zùm hết zậy bùn quá trời lungianroibatngobucquaucche

Bình luận (0)
NP
Xem chi tiết
PT
15 tháng 5 2015 lúc 20:31

Ủa tui tưởng bài này ỏ lớp 7 cơ ch71, lớp 6 có rùi sao

 

Bình luận (0)
TL
15 tháng 5 2015 lúc 20:49

từ đề bài => \(2014+\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}+2014=\frac{a^2+b^2}{c^2}+2014\)

=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}\). theo tính chất dãy tỉ số bằng nhau

=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}=\frac{b^2+c^2+a^2+c^2+a^2+b^2}{a^2+b^2+c^2}=\frac{2.\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=2\)

=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{b^2}+\frac{c^2}{b^2}=\frac{a^2}{c^2}+\frac{b^2}{c^2}=2\)=>\(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{c^2}=2+2+2=6\) 

=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{c^2}{b^2}=6:2=3\)\(P=2015.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\right)=2016.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)=2016.3=6048\)

Bình luận (0)