Tìm hai STN a và b biết a+b=128 và ƯCLN(a,b)=16
tìm hai số nguyên dương a và b biết a.b=216 và ƯCLN (a,b)=6
tìm số tự nhiên a và b biết a+b=128 và ƯCLN( a,b)=16
Tham khảo:
1. Câu hỏi của Nghĩa Nguyễn Trọng - Toán lớp 6 - Học trực tuyến OLM
2. Câu hỏi của nguyen thuy linh - Toán lớp 6 - Học trực tuyến OLM
Tìm hai số tự nhiên a và b (a>b), biết rằng: a + b = 128 và ƯCLN (a,b) = 16
ƯCLN(a,b)=16
=>\(\left\{{}\begin{matrix}a=16k\\b=16f\end{matrix}\right.\)
a+b=128
=>16k+16f=128
=>k+f=128/16=8
a>b nên 16k>16f
=>k>f
mà k+f=8
nên \(\left(k,f\right)\in\left\{\left(7;1\right);\left(6;2\right);\left(5;3\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(112;16\right);\left(96;32\right);\left(80;48\right)\right\}\)
mà ƯCLN(a,b)=16
nên \(\left(a,b\right)\in\left\{\left(112;16\right);\left(80;48\right)\right\}\)
Tìm hai số tự nhiên a và b ( a > b) biết rằng : a + b = 128 và ƯCLN ( a , b ) = 16
\(a=16a';b=16b'\left(\text{với a';b' nguyên dương và: (a',b')=1}\right)\Rightarrow a'+b'=8\)
đến đây vi a>b nên có các bộ nghiệm:
(a',b') thuộc: {(8;0);(7;1);(6;2);(5;3)}
từ đây nhân 16 lên ra a,b
Tìm hai số tự nhiên a và b ( a < b ) biết rằng : a + b = 128 và ƯCLN (a , b ) = 16
Vì UCLN (a, b ) = 16 => a = 16m; b = 16n với m < n; và UCLN ( m, n) = 1
ta có: a + b = 128 => 16m + 16n = 128
16 (m+n) = 128
m+n = 128 : 16
m+n = 8
8 = 1+7 = 2+6 = 3+5 = 4+4
vì m<n và UCLN (m,n) = 1 => bảng sau:
vậy các cặp số (a;b) là (16;112) ; (48;80).
tìm hai số a,b ( a > b ) biết a + b = 128 và ƯCLN ( a,b ) = 16
Vì ƯClN( a, b) = 16
-> a = 16m : b = 16n ( m,n thuộc N)
và (m,n)=1
mà a+b = 128
-> 16m + 16n = 128
16(m+n) = 128
m+n = 8
vì a>b nên : m= 7,8,5,6 ; n = 1,0,3,2
-> a = 112,128,80,96 ; b = 16,0,48,32
Tìm hai số tự nhiên a và b (a >b), biết rằng:
a+b = 128 và ƯCLN (a,b)= 16
Gọi a=mx16 b=nx16 (m;n thuộc tập hợp số tự nhiên;m>n va ƯCLN(m;n)=1)
Ta có : a+b=128<=>mx16+nx16=128=>16x(m+n)=128
m+n=128:16=8
vì ƯCLN(m;n)=1=>m và n là 2 số nguyên tố .Phân tích 8 thành tổng của 2 số hạng ta được
8=0+8=1+7=2+6=3+5=4+4
Vì a;b là số nguyên tố =>a=5 va b=3 theo điều kiện a>b
Đáp số : a=5
b=3
a+b=128
ƯCLN (a,b)=16
ta có : 128:16=8
\(\frac{a}{16}+\frac{b}{16}=8\)
\(\frac{a+b}{16}=8\)
Phân tích 8 thành tổng của 2 số tự nhiên ta được :
8=5+3=1+7=2+6=0+8=4+4
Mà 3 x 16 + 5 x 16 = 48 + 80 =128
Nên a = 48
b=80
thõa mãn điều kiện
1. tìm 2 số dương a và b , biết a+b = 128 và ƯCLN ( a;b) = 16
1. tìm 2 số dương a và b , biết a.b = 216 và ƯCLN ( a;b) = 6
Tìm 2 số tự nhiên a và b (a>b) Biết rằng a+b=128 và ƯCLN (a;b)=16
Vì ƯCLN ( a;b )=1\(\left\{{}\begin{matrix}a=16.m\\b=16.n\end{matrix}\right.\) ( m;n ∈ \(N\));(m;n)=1
Ta có : a+b=128
⇔ 16.m + 16.n = 128
⇔ 16.(m+n) = 128
⇔ m + n =128 : 16 = 8
Mà (m+n)=1⇔\(\left\{{}\begin{matrix}m=3\\n=5\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=7\\n=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=5\\n=3\end{matrix}\right.\)
Các cặp giá trị (a;b)tương ứng là ( 16;11;12 ) ; (48;80 ) ; ( 112;16 ) ;(80;48 )
giải bài toán sau tìm 2 số tự nhiên a và b biết rằng a+b=128 và ƯCLN(a,b)=16
Vì ƯCLN(a;b)=1 \(\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases}\left(m;n\in N\right);\left(m;n\right)=1}\)
Ta có: a + b = 128
=> 16.m + 16.n = 128
=> 16.(m + n) = 128
=> m + n = 128 : 16 = 8
Mà (m;n)=1 \(\Rightarrow\hept{\begin{cases}m=1\\n=7\end{cases}}\)hoặc \(\hept{\begin{cases}m=3\\n=5\end{cases}}\) hoặc \(\hept{\begin{cases}m=7\\n=1\end{cases}}\) hoặc \(\hept{\begin{cases}m=5\\n=3\end{cases}}\)
Các cặp giá trị (a;b) tương ứng là: (16;112) ; (48;80) ; (112;16) ; (80;48)
vì ƯCLN(a,b) = 16 suy ra a = 16.m, b = 16.n (m,n) = 1
ta có a+b = 128
suy ra 16m+16n = 128
suy ra 16.(m+n) = 128
suy ra m+n = 128/16=8
m , n
1 7
3 5
7 1
5 3
m | |||||||
|
Ta có :a+b=128
Mà 16 là WCLN (a,b)
=>16.k+16.a=128
16.(k+a)=128
k+a =128:16
k+a =8
=>(k,a)\(\in\)tập hợp chứa pt 7,1,5,3
Chúc bn học tốt