\(Cho:\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.CMR:\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). CMR: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). CMR:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}CMR\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Vì : bz-cy/a=cx-az/b=ay-bx/c
=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2
Ap dung tính chất của dãy tỉ số bằng nhau :
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+...
= 0/a^2+b^2+c^2=0
Vì bz-cy/a=0=>bz=cy=>y/b=z/c (1)
Vì cx-az/b=0=>cx=az=>x/a=z/c (2)
Từ (1) và (2) => x/a=y/b=z/c
Biết: \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.\left(a,b,c\ne0\right).CMR:\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\Leftrightarrow\frac{baz-cay}{a^2}=\frac{cbx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{baz-cay+cbx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\)
\(\Rightarrow ay=bx\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)
\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho :\(\frac{Bz-Cy}{A}=\frac{Cx-Az}{B}=\frac{Ay-Bx}{C}\)
CMR : \(\frac{x}{A}=\frac{y}{B}=\frac{z}{C}\)
Biết rằng \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) .CMR: x : y : z = a : b : c
Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) .CMR: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Tham khảo ở đây:
Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath
CHO \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
cmr \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Ta có:(bz-cy)/a=(cx-az)/b=(ay-bx)/c
<=>(abz-acy)/a2=(bcx-abz)/b2=(acy-bcx)/c2
Theo t/c dãy tỉ số=nhau:
(abz-acy)/a2=(bcx-abz)/b2=(acy-bcx)/c2=(abz-acy+bcx-abz+acy-bcx)/a2+b2+c2=0/a2+b2+c2=0
Do đó: bz-cy=cx-az=ay-bx=0
*bz-cy=0<=>bz=cy<=>y/b=z/c(1)
*cx-az=0<=>cx=az<=>x/a=z/c(2)
*ay-bx=0<=>ay=bx<=>x/a=y/b(3)
Từ (1);(2);(3)=>x/a=y/b=z/c(đpcm)
Dạng này dễ
c nhân a vào tỉ số 1;nhân b vào t/s 2;nhân c vào t/s 3, áp dụng dtsbn là đc
Các số a,b,c,x,y,z thỏa mãn điều kiện \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\).CMR :\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
giả sử
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
ta có:\(\text{}\text{}\text{}\text{}\text{}\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cyx}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cyx+cxy-ayz+ayz-bxz}{ax+by+cz}=0\)
\(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\)
\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{z}{c}=\frac{x}{a}\left(2\right)\)
\(\frac{ay-bx}{c}=0\Rightarrow ay=bx\Rightarrow\frac{x}{a}=\frac{y}{b}\left(3\right)\)
từ (1),(2),(3) => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
=> điều giả sử đúng => đpcm
ê cho sửa cái bài này cái :>
đặt\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
\(\frac{bz-cy}{a}=\frac{bck-cbk}{a}=0\)(1)
\(\frac{cx-az}{b}=\frac{cak-ack}{b}=0\)(2)
\(\frac{ay-bx}{c}=\frac{abk-bak}{c}=0\)(3)
từ (1),(2),(3) => đpcm