Let M = abc.d and N = a.bcd . Given that M + N = 203.313, evaluate M - N.
Mình đố các bạn đó .
Given a trapezoid ABCD with base AB=4cm , CD=6cm , and góc C + góc D = 90 độ . Let M, N be respectively the midpoints of the segments AB and CD . Evaluate MN.
Answer: MN= ? cm
chỗ tiếng việt chỗ tiếng anh là sao
abc.d - a.bcd =562.112 tim abc.d +a.bcd
Given a trapezoid ABCD with base , and . Let M, N be respectively the midpoints of the segments . Evaluate MN.
Answer: cm
Given a segment AB = 100cm. Let C be a point between A and B. Let M, N be respectively the midpoint of the segment BC, AC. Find the length of the segment MN.
Given a segment AB = 100cm. Let C be a point between A and B. Let M, N be respectively the midpoint of the segment BC, AC. Find the length of the segment MN.
Answer : MN = 50 cm
P/s : k mình nha bạn
let m and n bel positive integers such that the fraction m/n is irreducible and the fraction 4m+3n/5m+2n is not irreducible. Find the greatest common divisor of 4m+3n and 5m+2n
đây là toán văn chứ ko phải là toán tiếng anh
tick cho mình tròn 500
uk thì đề tiếng việt của nó là :cho m và n nguyên dương và m / n tối giản và 4m + 3n / 5m + 2n là không thể tối giản . Tìm ước số chung lớn nhất của 4m + 3n và 5m + 2n
Exer 1: There is a division with the quotient is 6 and the remainder is 3. The sum of dividend, divisor and remainder are 195. Find the dividend are divisor.
Exer 2: Prove that: Amoney three consecutive natural numbers, there is one only one the number which divisibles by 3.
Exer 3: Given natural number, n = \(\overline{1ab1}\). Let m be the natural number which is written the opposite respectively of n. Prove that the different of n and m divisibles by 90.
Exer 1:
Trả lời:
The sum of dividend and divisor are:
195 - 3 = 192
Because the quotient is 6.
The divisor is:
(192-3) : (6+1) = 27
The dividend is:
192 - 27 = 165
Exer 2:
Trả lời:
Let three unknow numbers be: n, n + 1, n + 2.
Because n has three forms: 3k, 3k + 1, 3k + 2.
+) If n
Xin lỗi, mình vẫn chưa viết xong, rồi mình viết tiếp đây:
+) If n = 3k then there is only n divisibles by 3.
+) If n = 3k + 1 then there is only n + 2 divisibles by 3.
+) If n = 3k + 2 then there is only n + 1 divisibles by 3.
Thus, amoney three consecutive natural numbers, there is one only one the number which divisibles by 3.
Exer 3:
Trả lời:
When we written the opposite respectively of n, we obtain \(\overline{1ba1}\).
We have:
\(\overline{1ab1}\) + \(\overline{1ba1}\) = (1000 + 100a + 10b + 1) - (1000 + 100b + 10a + 1)
= 90a - 90b
= 90(a - b)\(⋮\) 90
Thus, the difference of n and m which divisibles by 90.
Let P be the intersection point of 3 internal bisectrices of a given triangle ABC. The line passing through P and perpendicular to CP intersects AC and BC at M and N. If AP=3cm, BP=4cm, compute AM/BN?
Ta có
\(\widehat{ABM}=\widehat{APC}-\widehat{MPC}=\left(90+\frac{\widehat{ABC}}{2}\right)-90=\widehat{PBC}\)
Tương tự tra có: \(\widehat{NPB}=\widehat{PAM}\)
\(\Rightarrow\Delta MAP\approx\Delta NPB\)
\(\Rightarrow\frac{AP}{PB}=\frac{MA}{NP}=\frac{MP}{NB}\)
\(\Rightarrow MA.NB=NP.MP=NP^2=MP^2\)(Dễ thấy tam giác MNC cân có CP là đường cao và đường phân giác)
Ta lại có: \(\frac{MA}{NB}=\frac{MA^2}{MA.NB}=\frac{MA^2}{NP^2}=\frac{AP^2}{PB^2}=\frac{3^2}{4^2}=\frac{9}{16}\)
Given that a & b=(a+b)(a-b). Evaluate: 4&3.
Answer: 4&3=...........
We know that a & 3 = (a+b)(a-b); therefore, 4 & 3 = (4-3)(4+3) = 7
given that m=999...99;2001 digits and n=888...88; 2001 digits, find the sum of the digits in the value of m*n
giúp với,mik cần gấp,viết lời giải!
The sum of the digits of m is 9*2001=18009
The sum of the digits of n is 8*2001= 16008
We have 1+8+0+0+9=18
1+6+0+0+8=15
18*15= 270
=> the sum of the digits in the value of m*n is 2+7+0 =9
nhầm sửa lại thành tổng các chữ số là 27