Ôn tập toán 6

TH

Exer 1: There is a division with the quotient is 6 and the remainder is 3. The sum of dividend, divisor and remainder are 195. Find the dividend are divisor.

Exer 2: Prove that: Amoney three consecutive natural numbers, there is one only one the number which divisibles by 3.

Exer 3: Given natural number, n = \(\overline{1ab1}\). Let m be the natural number which is written the opposite respectively of n. Prove that the different of n and m divisibles by 90.

AC
23 tháng 2 2017 lúc 14:02

Exer 1:

Trả lời:

The sum of dividend and divisor are:

195 - 3 = 192

Because the quotient is 6.

The divisor is:

(192-3) : (6+1) = 27

The dividend is:

192 - 27 = 165

Exer 2:

Trả lời:

Let three unknow numbers be: n, n + 1, n + 2.

Because n has three forms: 3k, 3k + 1, 3k + 2.

+) If n

Bình luận (0)
AC
23 tháng 2 2017 lúc 14:14

Xin lỗi, mình vẫn chưa viết xong, rồi mình viết tiếp đây:

+) If n = 3k then there is only n divisibles by 3.

+) If n = 3k + 1 then there is only n + 2 divisibles by 3.

+) If n = 3k + 2 then there is only n + 1 divisibles by 3.

Thus, amoney three consecutive natural numbers, there is one only one the number which divisibles by 3.

Exer 3:

Trả lời:

When we written the opposite respectively of n, we obtain \(\overline{1ba1}\).

We have:

\(\overline{1ab1}\) + \(\overline{1ba1}\) = (1000 + 100a + 10b + 1) - (1000 + 100b + 10a + 1)

= 90a - 90b

= 90(a - b)\(⋮\) 90

Thus, the difference of n and m which divisibles by 90.

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
TH
Xem chi tiết
ND
Xem chi tiết
DD
Xem chi tiết
LD
Xem chi tiết
LD
Xem chi tiết
LD
Xem chi tiết
LD
Xem chi tiết
LL
Xem chi tiết