Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TA
Xem chi tiết
TA
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
VL
Xem chi tiết
NH
1 tháng 11 2024 lúc 21:10

Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x)               =>P(x)=(x-2).A(x)+5  (1)      và P(x)=(x-3).B(x)=7 (2)                               Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x)           Ta có : (x-2)(x-3) có bậc là 2 =>  R(x) có bậc là 1 => R(x) có dạng ax+b  (a,b là số nguyên )                                                             =>R(x)=(x-2)(x-3).C(x)+ax+b  (3)                                                         thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5                                            thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7                                         => a=2,b=1 =>R(x)=2x+1                                                                      Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1

Bình luận (0)
HL
Xem chi tiết
PK
Xem chi tiết
MB
2 tháng 1 2018 lúc 21:55

Cho abc thuộc N* thỏa mãn a^2+b^2=c^2+d^2.cmr :a+b+c+d là hợp số

Bình luận (0)
H24
Xem chi tiết
TD
18 tháng 3 2021 lúc 21:06

Áp dụng định lý Bezout ta được:

f(x)chia cho x+1 dư 2 ⇒f(−1)=4

Vì bậc của đa thức chia là 3 nên f(x)=(x+1)(x2+1)q(x)+ax2+bx+c

=(x2+1)(x+1)q(x)+(ax2+a)−a+bx+c

=(x2+1)(x+1)q(x)+a(x2+1)+bx+c−a

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
TT
16 tháng 4 2021 lúc 22:02

undefined

Bình luận (0)
AH
16 tháng 4 2021 lúc 22:20

Lời giải:

Đặt $f(x)=Q(x)(x+1)(x^2+1)+ax^2+bx+c$ trong đó $ax^2+bx+c$ là đa thức dư khi chia $f(x)$ cho $(x+1)(x^2+1)$

Ta có:

$f(x)=Q(x)(x+1)(x^2+1)+a(x^2-1)+b(x+1)+a-b+c$

$=(x+1)[Q(x)(x^2+1)+a(x-1)+b]+a-b+c$

Do đó $f(x)$ chia $x+1$ có dư là $a-b+c$

$\Rightarrow a-b+c=4(*)$

Lại có:

$f(x)=Q(x)(x+1)(x^2+1)+a(x^2+1)-a+bx+c$

$=(x^2+1)[Q(x)(x+1)+a]+bx+(c-a)$

$\Rightarrow f(x)$ khi chia $x^2+1$ có dư là $bx+(c-a)$

$\Rightarrow bx+(c-a)=2x+3$

$\Rightarrow b=2; c-a=3(**)$

Từ $(*);(**)\Rightarrow a=\frac{3}{2}; b=2; c=\frac{9}{2}$

Bình luận (2)