CMR tồn tại 1 bội của 2023 chỉ chứa toàn chữ số 1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CMR: tồn tại 1 bội của 31 chỉ gồm toàn chữ số 0 và 1
Xét dãy số: 1; 11; 111; 1111; ...; 111...1 (32 số 1)
Ta đã biết 1 số tự nhiên khi chia cho 31 chỉ có thể có 31 loại số dư là dư 0; 1; 2; ...; 30. Có 32 số mà chỉ có 31 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư
Hiệu của 2 số này chia hết cho 31 và chỉ gồm toàn chữ số 0 và 1 (đpcm)
cmr tồn tại một bội số của 17 gồm toàn chữ số 1 ?
CMR tồn tại 1 số là bội của 31 gồm toàn chữ số 7
Bạn gọi như sau:
a1=7
a2=77
a3=777
......
a32=77777.....7777(gồm 32 số 7)
Đem chia cho 31 ta có 32 số số dư
R1;R2:R3;R4;....:R32 nhưng chỉ nhận 31 giá trị(0;1;2;3;4;5;6;.....;30) nên sẽ có 2 số dư trùng nhau
chẳng hạn Rm=Rn (Với m>n) thì am-an chia hết cho 31 (vì đồng dư),ta lại có
777..7(gồm m chữ số 7)-77...7(gồm n chữ số 7)=777...7(gồm m-n số 7)00....0(gồm n số 0)=777...7 nhân 10^n chia hết cho 31
vi 10^n và 31 là hai số nguyên tố cùng nhau nên suy ra 777..7 chia hết cho 31 .
Vì bài này chỉ chứng minh chứ ko phải tìm số nhé :D
tồn tại 1 bội của 1993 chỉ chứ toàn chữ số 1.
giúp mình nha!
Xét 1994 số
a1=1
a2=11
...
a1994=11..11 (1994 số 11)
Theo nguyên lí Dirichlet tồn tại 2 trong 1994 số trên có cùng số dư khi chia cho 1993
Giả sử 2 số đó là am và an với 1≤m<n≤1994
Hiệu an−am=11..11×10x (y chữ số 1,y≥1) chia hết cho 1993
Vì (10x,1993) = 1 nên 11..11 (y chữ số 1) chia hết cho 1993
Do đó có đpcm
cảm ơn bạn nhiều
1,Chứng minh rằng với 17 số nguyên bất kì bao giờ cũng tồn tại 1 tổng 5 số chi hết cho 5
2,Chứng minh rằng tồn tại 1 bội của số 2017 chỉ chứa toàn số 1
CMR tồn tại ít nhất 1 số là bội của 17 gồm toàn chữ số 1
Ai đúng mình tick, mình cần gấp
111111111111 là đáp án ko tin bạn thứ tính đi
1.1111111e+13
CMR: Tồn tại bội của 131 gồm toàn chữ số 2
1,Chứng minh tồn tại bội của 2003 có tận cùng là 2006
2,chứng minh tồn tại bội của 2003 viết bởi toàn chữ số 3
mn trả lời nhanh hộ mk vs mk tích điểm cho
CMR tồn tại một bội của 13 gồm toàn chữ số 0(giải giúp mình cẩn thận rồi mình like)
Chọn bộ 13 số sau:
1,11,...111111 (13 chữ số 1)
Đem chia 13 số trên cho 12.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 111..111 (m chữ số 2) và 111.111 (n chữ số 2) m,n trong khoảng 1 đến 13
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 12 nên
[111.111 (m chữ số 2) - 111.111 (n chữ số 2)] chia hết cho 12
=>111.11100...000 (m-n chữ số 2; n chữ số 0) chia hết cho 12
hay 111.111(m-n chữ số 2).10^n chia hết cho 12
=>111.111 (m-n chữ số 2) chia hết cho 12
=> đpcm.