Bài 8. Tìm giá trị nhỏ nhất của biểu thức: A = \(\sqrt{1-6x+9x^2}\)+ \(\sqrt{9x^2-12x+4}\)
Tìm giá trị nhỏ nhất của biểu thức:\(A=\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}\)
\(A=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)
\(A=3x-1+5-3x=4\)
\(A\)có giá trị ko phụ thuộc vào biến x
Tìm giá trị nhỏ nhất của:
1) A = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
2) B = \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
Nhớ làm đầy đủ nha mọi người
Tìm GTNN của biểu thức
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(=\left|1-3x\right|+\left|3x-2\right|\)
\(\ge\left|1-3x+3x-2\right|=\left|-1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-3x\right)\left(3x-2\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{2}{3}\)
Vậy \(A_{min}=1\) tại \(\frac{1}{3}\le x\le\frac{2}{3}\)
Xin lỗi cậu tớ mới học lớp 7 thôi
Tìm giá trị nhỏ nhất của biểu thức,
A=\(\sqrt{4x^2+4x+2}\)
B=\(\sqrt{2x^2-4x+5+1}\)
Tìm giá trị lớn nhất của biểu thức
M=\(-5+\sqrt{1+9x^2+6x}\)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
Mơn bạn nha
Với giá trị nào của x biểu thức sau đạt giá trị nhỏ nhất :\(A=1-\sqrt{5-\sqrt{1-6x+9x^2}}+\left(3x-1\right)^2\)
\(A=1-|1-3x|+|3x-1|^2\)
\(=\left(|3x-1|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow minA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)hoặc \(x=\frac{1}{6}\)
giá trị nhỏ nhất của biểu thức Y=\(\sqrt{9x^2+12x+11}\)
\(Y=\sqrt{\left(3x+2\right)^2+7}\ge\sqrt{0+7}=\sqrt{7}\)
\(Y_{Min}=\sqrt{7}\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
Bài 3.
a) Tìm giá trị nhỏ nhất của biểu thức: A=x2+12x+39; B=9x2-12x
b) Tìm giá trị lớn nhất của biểu thức sau: C=4x-x2+1; D=-4x2+4x-3
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
tìm giá trị lớn nhất : \(A=-5+\sqrt{1-9x^2+6x}\)
tìm giá trị nhỏ nhất : B= \(\sqrt{9x^2+12x+11}\)
tìm giá trị nhỏ nhất của biểu thức \(A=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}+\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9},x>0\)
\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)
Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)
Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)
\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)
Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)
\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)
Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)