cho x+Y=a,x-y=b.tính xy và x3-y 3theo a,b
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x+y=a,x-y=b.tính xy và x3-y3 theo a,b.Giúp với nhaaaa
\(x+y=a\left(1\right)\)
\(x-y=b\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow2x=a+b\Rightarrow x=\dfrac{a+b}{2}\)
\(\left(1\right)\Rightarrow y=a-x\Rightarrow y=a-\dfrac{a+b}{2}\Rightarrow y=\dfrac{a-b}{2}\)
\(xy=\dfrac{\left(a+b\right)}{2}.\dfrac{\left(a-b\right)}{2}=\dfrac{a^2-b^2}{4}\)
\(x^3-y^3=\left(\dfrac{a+b}{2}\right)^3-\left(\dfrac{a-b}{2}\right)^3=\dfrac{\left(a+b\right)^3}{8}-\dfrac{\left(a-b\right)^3}{8}\)
\(=\dfrac{\left(a+b\right)^3-\left(a-b\right)^3}{8}\)
\(=\dfrac{\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]}{8}\)
\(=\dfrac{2b\left[a^2+b^2+2ab+a^2-b^2+a^2+b^2-2ab\right]}{8}\)
\(=\dfrac{b\left[3a^2+b^2+2ab\right]}{4}\)
\(\left\{{}\begin{matrix}x+y=a\\x-y=b\end{matrix}\right.\) tính \(x^3\) - y3 theo \(a\) và \(b\)
⇒ \(\left\{{}\begin{matrix}x+y+x-y=a+b\\x-y=b\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2x=a+b\\y=x-b\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=\left(a+b\right):2\\y=\left(a-b\right):2\end{matrix}\right.\) ⇒ \(xy\) = \(\dfrac{a+b}{2}\)\(\times\)\(\dfrac{a-b}{2}\) = \(\dfrac{a^2-b^2}{4}\)
\(x^{3^{ }}\) - y3 = (\(x\) - y)(\(x^2\) + \(x\)y + y2) = \(\left(x-y\right)\)\(\left(\left[x+y\right]^2-xy\right)\) (1)
Thay \(x-y\) = a; \(x\) + y = b và \(xy\) = \(\dfrac{a^2-b^2}{4}\) vào (1) ta có:
\(x^3\) - y3 = b.(a2 - \(\dfrac{a^2-b^2}{4}\)) = b.\(\dfrac{3a^2+b^2}{4}\) = \(\dfrac{3a^2b+b^3}{4}\)
Cho x+y=a;xy=b.Tính giá trị của các biểu thức sau theo a và b:
a)x4+y4 b)x5+y5
a) Để tính giá trị của biểu thức x^4 + y^4, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 Từ đó, ta có thể tính giá trị của biểu thức x^4 + y^4 theo a và b: x^4 + y^4 = (a^2 - 2b)^2 - 2(a - 2b)b b) Tương tự, để tính giá trị của biểu thức x^5 + y^5, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4) Từ đó, ta có thể tính giá trị của biểu thức x^5 + y^5 theo a và b: x^5 + y^5 = (a)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)
Tính giá trị của biểu thức:
a) P = 2 x 1 2 x 2 + y - x ( x 2 + y ) + xy ( x 3 - 1 ) tại x = 10 và y = - 1 10
b) Q = x 3 - 30 x 2 - 31 x + 1 tại x = 31 .
a) Rút gọn P = x 4 y ; thay x = 10 và y = − 1 10 và biểu thức ta được P = 10 4 . − 1 10 = − 10 3 .
b) Nhận xét: Ta thấy biểu thức Q không thể rút gọn và việc thay trực tiếp x = 31 vào biểu thức khiến tính toán phức tạp. Với x = 31 thì 30 = 31 – 1 = x – 1.
Do đó Q = x 3 – ( x – 1 ) x 2 – x 2 + 1
Rút gọn Q = 1.
Tính giá trị biểu thức:
a) A = a(b + 3) - b(3 + b) tại a = 2003 và b = 1997;
b) B = b 2 -8b- c(8 - b) tại b = 108 và c = -8;
c) C = xy(x + y) - 2x - 2y tại xy = 8 và x + y = 7;
d) D = x 5 (x + 2y)- x 3 y(x + 2y) + x 2 y 2 (x + 2y) tại x = 10 và y = -5.
a) Cách 1; Thay a = 2003; b = 1997 vào biểu thức rồi thực hiện tính toán thu được A = 12000.
Chú ý: Trong biểu thức trên việc thay trực tiếp khiến việc tính toán khó khăn.
Cách 2: Phân tích A = (b + 3)(a - b), thay a = 2003 và b = 1997 vào biểu thức A = 12000.
b) Phân tích B = (b - 8)(b + c), thay = 108 và c = -8 vào biểu thức B = 10000.
c) Với xy = 8; x + y = 7, ta không tìm được giá trị nguyên x, y. Phân tích c = (x + y)(xy - 2), thay xy = 8; x + y = 7 vào biểu thức c = 42.
d) Phân tích D = (x + 2y)( x 5 - x 3 y + x 2 y 2 )
Nhận xét: Với x -10; y = -5 Þ x+ 2y = 0 => D = 0.
cho x+y=a,xy=b.Tính giá trị biểu thức x7+y7 theo a,b
giúp mk vs mn
\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^4-x^4y^3\)
Biểu diễn các số hạng theo a, b
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)
Khi đó:\(x^7+y^7=\left(a^3-3ab\right)\left[\left(a^2-2b\right)^2-2b^2\right]-ab^3\)
Cho x+y=a,x^2+y^2=b.Tính x^3+y^3 theo a và b
x^3+y^3=(x+y)^3-3xy(x+y)=a^3-3*\(\frac{\left(x+y\right)^2-x^2-y^2}{^{^{ }}2}\)*a=a^3-3*\(\frac{a^2-b}{2}\)*a
a) Cho x+y=9,xy=18 tính x3+y3, x4+y4,x3-y3
b)Cho x+y = -9 ,tính A= x2+2xy+y2-6x-5y-5
Lời giải:
a.
$x^3+y^3=(x+y)^3-3xy(x+y)=9^3-3.9.18=243$
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=[9^2-2.18]^2-2.18^2=1377$
Nếu $x\geq y$ thì:
$x^3-y^3=(x-y)(x^2+xy+y^2)$
$=|x-y|[(x+y)^2-xy]=\sqrt{(x+y)^2-4xy}[(x+y)^2-xy]$
$=\sqrt{9^2-4.18}(9^2-18)=189$
Nếu $x< y$ thì $x^3-y^3=-189$
b.
$A=(x+y)^2-6(x+y)+y-5$
$=(-9)^2-6(-9)+y-5=130+y$
Chưa đủ cơ sở để tính biểu thức.
a) \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=9^3-3\cdot18\cdot9=243\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2\)
\(=\left(9^2-2\cdot18\right)^2-2\cdot18^2\)
\(=45^2-2\cdot324\)
=1377
Tính giá trị của biểu thức:
a) x2 – y2 tại x = 87 và y = 13
b) x(x2 + xy + y2) – y(x2 + xy + y2) tại x = 10 và y = -1
c) x3 + 6x2 + 12x + 8 tại x = 8
d) x2 – 8x + 17 tại x = 104
a: \(=\left(x-y\right)\left(x+y\right)\)
\(=74\cdot100=7400\)
c: \(=\left(x+2\right)^3\)
\(=10^3=1000\)
a) \(=\left(x-y\right)\left(x+y\right)\)
Thay \(x=87;y=13\) ta đc: \(\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)
b)\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
Thay \(x=10;y=-1\) ta đc:
\(10^3-\left(-1\right)^3=1000-1=999\)
c)\(=\left(x+2\right)^3\)
Thay \(x=8\) ta đc: \(\left(8+2\right)^3=10^3=1000\)
d)\(=x^2-8x+16+1=\left(x-4\right)^2+1\)
Thay \(x=104\) ta đc: \(\left(104-4\right)^2+1=100^2+1=10001\)
Cho x +y = 24x+y=24 và xy = 18.xy=18.
x^3+ y^3=x3+y3=
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=24^3-3\cdot24\cdot18\)
\(=13824-1296\)
=12528