12135 : ( y x 4 + y x 5 ) = 40 : 8
Hai số x;y thỏa mãn x/-5=y/4 và x+y=-8
A.x=-40;y=32 B.x=32;y=-40
C.x=40;y=-32 D.x=10;y=4
Để giải bài toán này, ta sẽ sử dụng phương pháp đơn giản là giải hệ phương trình tuyến tính với hai ẩn x và y.
Bước 1: Tính x hoặc y từ phương trình x/-5=y/4
Ta thấy rằng x chia -5 và y chia 4 có kết quả bằng nhau, vậy ta có thể dùng công thức: x = -5 * (y/4) x = -5y/4
Bước 2: Thay x vào phương trình x+y=-8 để tính giá trị y
Ta có: x + y = -8 Thay x = -5y/4 vào phương trình trên ta được: -5y/4 + y = -8 -5y + 4y = -32 y = 8
Bước 3: Tính giá trị của x bằng cách thay y = 8 vào phương trình x = -5y/4
Ta có: x = -5 * (8/4) x = -10
Vậy hai số x và y thỏa mãn điều kiện đó là: x = -10 và y = 8.
áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{-5}=\dfrac{y}{4}=\dfrac{x+y}{\left(-5\right)+4}=-\dfrac{8}{-1}=-8\)
=> x/-5 = -8 . (-5) = 40
y/4 = -8 . 4 = -32
vậy x = 40 ; y = -32
Để giải bài toán này, ta sẽ sử dụng phương pháp đơn giản là giải hệ phương trình tuyến tính với hai ẩn x và y.
Bước 1: Tính x hoặc y từ phương trình x/-5=y/4
Ta thấy rằng x chia -5 và y chia 4 có kết quả bằng nhau, vậy ta có thể dùng công thức: x = -5 * (y/4) x = -5y/4
Bước 2: Thay x vào phương trình x+y=-8 để tính giá trị y
Ta có: x + y = -8 Thay x = -5y/4 vào phương trình trên ta được: -5y/4 + y = -8 -5y + 4y = -32 y = 8
Bước 3: Tính giá trị của x bằng cách thay y = 8 vào phương trình x = -5y/4
Ta có: x = -5 * (8/4) x = -10
Vậy hai số x và y thỏa mãn điều kiện đó là: x = -10 và y = 8.
tìm số nguyên x,y,z ;
a) 6/5 = 18/x
b) 3/4 = -21/x
c) x/4 = 21/28
d) -8/2x = 3/-9
e) -4/11 = x/22 = 40/z
f) - 3/4 = x/20 = 21 / y
g) -4/8 = x/-10 = -7/y = z/-24
h) x/4 = 9/x
\(a.\dfrac{6}{5}=\dfrac{18}{x}\Rightarrow x=\dfrac{18\cdot5}{6}=15\\ \text{Vậy}\text{ }x=15.\)
\(b.\dfrac{3}{4}=\dfrac{-21}{x}\Rightarrow x=\dfrac{-21\cdot4}{3}=28\\ \text{ }\text{ }\text{ }\text{ }\text{Vậy }x=28.\)
\(c.\dfrac{x}{4}=\dfrac{21}{28}\Rightarrow x=\dfrac{21\cdot4}{28}=3\\ \text{Vậy }x=3.\)
\(d.\dfrac{-8}{2x}=\dfrac{3}{-9}\Rightarrow x=\dfrac{-8\cdot\left(-9\right)}{3}:2=12\\ \text{Vậy }x=12.\)
\(e.\dfrac{-4}{11}=\dfrac{x}{22}=\dfrac{40}{z}\\ \Rightarrow x=\dfrac{-4\cdot22}{11}=-8\\ \Rightarrow z=\dfrac{22\cdot40}{-8}=-110\\ \text{Vậy }x=-8;z=-110.\)
\(f.\dfrac{-3}{4}=\dfrac{x}{20}=\dfrac{21}{y}\\ \Rightarrow x=\dfrac{-3\cdot20}{4}=-15\\ \Rightarrow y=\dfrac{21\cdot20}{-15}=-28\\ \text{Vậy }x=-15;y=-28.\)
\(g.\dfrac{-4}{8}=\dfrac{x}{-10}=\dfrac{-7}{y}=\dfrac{z}{-24}\\ \Rightarrow x=\dfrac{-4\cdot\left(-10\right)}{8}=5\\ \Rightarrow y=\dfrac{-7\cdot\left(-10\right)}{5}=14\\ \Rightarrow z=\dfrac{-7\cdot\left(-24\right)}{14}=12\\ \text{Vậy }x=5;y=14;z=12.\)
\(h.\dfrac{x}{4}=\dfrac{9}{x}\\ \Rightarrow x\cdot x=9\cdot4\\ \Rightarrow x\cdot x=36\\ \Rightarrow x\cdot x=6\cdot6\\ \text{Vậy }\text{cả hai }x=6.\)
Cho x,y>0. Tìm min M = \(8\left(x^4+y^4\right)+\frac{1}{x^5}+\frac{1}{y^5}+\frac{1}{x^2y^2}-\frac{40}{xy}\)
Bài 1 tìm x
l) (x + 9) . (x2 – 25) = 0
e) |x - 4 |< 7
f) 40 < 31 + |x |< 47
g) | x + 3| ≤ 2
m) (-5x + 20).(x3 – 8) = 0
a) (x + 1).(y - 2) = 5
b) (x - 5).(y + 4) = -7
c) (x + 1)2 + (y – 1)2 = 0
d) (2x – 18)2 + ( y + 37)2 = 0
k |x-40|+|x-y+10|_<0
l) (x + 9) . (x2 – 25) = 0
<=> (x + 9) . (x – 5) . (x + 5) = 0
<=> \(\left[{}\begin{matrix}\text{x + 9 = 0}\\x-5=0\\x+5=0\end{matrix}\right.\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{-9,5,-5\right\}\)
e) |x - 4 |< 7
<=> \(\left[{}\begin{matrix}x-4=7\\x-4=-7\end{matrix}\right.< =>\left[{}\begin{matrix}x=11\\x=-3\end{matrix}\right.\)
Vậy S = \(\left\{11;-3\right\}\)
I,(x+9).(x^2-25)=0
tương đương:x+9=0
x^2-25=0
tương đương : x=-9
x=5
e,\(\left|x-4\right|\)=7
tương đương x-4=4
x-4=-4
tương đương :x=0
x=-8
Bài 1:
l) Ta có: \(\left(x+9\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{-9;5;-5\right\}\)
e) Ta có: |x-4|<7
mà \(\left|x-4\right|\ge0\forall x\)
nên \(\left|x-4\right|\in\left\{0;1;2;3;4;5;6\right\}\)
\(\Leftrightarrow x-4\in\left\{0;1;-1;2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)
hay \(x\in\left\{4;5;3;6;2;7;1;8;0;9;-1;10;-2\right\}\)
Vậy: \(x\in\left\{4;5;3;6;2;7;1;8;0;9;-1;10;-2\right\}\)
f) Ta có: \(40< 31+\left|x\right|< 47\)
\(\Leftrightarrow\left|x\right|+31\in\left\{41;42;43;44;45;46\right\}\)
\(\Leftrightarrow\left|x\right|\in\left\{10;11;12;13;14;15\right\}\)
hay \(x\in\left\{10;-10;11;-11;12;-12;13;-13;-14;14;15;-15\right\}\)
Vậy: \(x\in\left\{10;-10;11;-11;12;-12;13;-13;-14;14;15;-15\right\}\)
g) Ta có: \(\left|x+3\right|\le2\)
\(\Leftrightarrow\left|x+3\right|\in\left\{0;1;2\right\}\)
\(\Leftrightarrow x+3\in\left\{0;1;-1;2;-2\right\}\)
hay \(x\in\left\{-3;-2;-4;-1;-5\right\}\)
Vậy: \(x\in\left\{-3;-2;-4;-1;-5\right\}\)
1, x/-2 = y/5 và x + y = 12
2, x/3 = y/2 và 2x + 5y = 32
3, x/3 = y/3 và 2x + 4y = 28
4, x/3 = 4/16 và 3x - y = 35
8. 3x = 5y và x + y = 40
bài 5: tìm x, y, z bt:
a, x/8 = y/12 vs x + y = 60
b, x/3 = y/6 vs x.y = 162
c, x/y = 2/5 vs x.y = 40
d, x/7 = y/6, y/8 = z/5 vs x + y - z = 37
e, 10x = 15y = 21z vs 3x - 5z + 7y = 37
a) Ta có hệ phương trình:
x/8 = y/12
x + y = 60 Giải bằng cách thay x/8 bằng y/12 trong phương trình thứ hai, ta có:
(y/12)*8 + y = 60
2y + y = 60
y = 20 Thay y = 20 vào x + y = 60, ta có x = 40. Vậy kết quả là x = 40, y = 20.
b) Ta có hệ phương trình:
x/3 = y/6
x*y = 162 Thay x/3 bằng y/6 trong phương trình thứ hai, ta có:
y^2 = 324
y = 18 Thay y = 18 vào x/3 = y/6, ta có x = 9. Vậy kết quả là x = 9, y = 18.
c) Ta có hệ phương trình:
x/y = 2/5
xy = 40 Từ phương trình thứ nhất, ta có x = 2y/5. Thay vào xy = 40, ta có:
(2y/5)*y = 40
y^2 = 100
y = 10 Thay y = 10 vào x = 2y/5, ta có x = 4. Vậy kết quả là x = 4, y = 10.
d) Ta có hệ phương trình:
x/7 = y/6
y/8 = z/5
x + y - z = 37 Thay x/7 bằng y/6 trong phương trình thứ ba, ta có x = (7/6)*y - z. Thay y/8 bằng z/5 trong phương trình thứ ba, ta có y = (8/5)*z. Thay x và y vào phương trình thứ ba, ta được:
(7/6)*y - z + y - z = 37
(19/6)*y - 2z = 37 Thay y = (8/5)*z vào phương trình trên, ta có:
(19/6)*(8/5)*z - 2z = 37
z = 30 Thay z = 30 vào y = (8/5)*z, ta có y = 48. Thay y và z vào x/7 = y/6, ta có x = 35. Vậy kết quả là x = 35, y = 48, z = 30.
e) Ta có hệ phương trình:
10x = 15y = 21z
3x - 5z + 7y = 37 Từ phương trình thứ nhất, ta có:
x = 3z/7
y = 3z/5 Thay x và y vào phương trình thứ hai, ta có:
3z/73 - 5z + 73z/5 = 37
3z - 5z + 12z - 245 = 0
10z = 245
z = 24.5 Thay z = 24.5 vào x = 3z/7 và y = 3z/5, ta có x = 10.5 và y = 14.7. Tuy nhiên, kết quả này không phải là một cặp số nguyên. Vậy hệ phương trình không có nghiệm thỏa mãn.
Tìm y biết:
a) 5x9+44<y:4+48< 100-9
b) 60> y-27-6> 58
c)40:5+29> 5 x y>5 x 8-5
Câu a tự làm nhé
b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Leftrightarrow32(2x+3)=24(3x-1)\)
\(\Leftrightarrow64x+96=72x-24\)
\(\Leftrightarrow64x+96-72x=-24\)
\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)
2. a. \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\) và x + y + z = 52
Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{52}{13}=4\)\((\)áp dụng tính chất dãy tỉ số bằng nhau \()\)
Vậy : \(\hept{\begin{cases}\frac{x}{3}=4\\\frac{y}{4}=4\\\frac{z}{6}=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=12\\y=16\\z=24\end{cases}}\)
TÌM X, Y BIẾT
a, x/3 =y/5 và y-x =8
b,x:7 =y:5 và x-y = 12
c, 2x =3y và y-x = -19
d, x/y =2/5 và xy =40
Ap dung day ti so = nhau ta co:
x/3=y/5=y-x/5-3=8/2=4
=>x/3=4=>x=12
y/5=4=>y=20
Ban lam tuong tu voi cau khac nha!!
Ta có: a) \(\frac{x}{3}=\frac{y}{5};x-y=8\Rightarrow\frac{x-y}{3-5}=\frac{8}{2}=4\)
\(\Rightarrow\hept{\begin{cases}x=4.3=12\\y=4.5=20\end{cases}}\)
b) Ta có: \(\hept{\begin{cases}x:7=y:5\\x-y=12\end{cases}\Rightarrow\frac{x}{7}=\frac{y}{5}=\frac{x-y}{7-5}=\frac{12}{2}=6}\)
\(\Rightarrow\hept{\begin{cases}x=6.7=42\\y=6.5=30\end{cases}}\)
c) Ta có: \(\hept{\begin{cases}2x=3y\\y-x=-19\end{cases}\Rightarrow\frac{y}{2}=\frac{x}{3}=\frac{y-x}{2-3}=\frac{-19}{-1}=19}\)
\(\Rightarrow\hept{\begin{cases}x=19.3=57\\y=19.2=38\end{cases}}\)
d) Tự làm