Những câu hỏi liên quan
KG
Xem chi tiết
LP
29 tháng 8 2023 lúc 13:49

Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)

\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

\(VP=\left(y^2+3y+1\right)^2-1\)

\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))

pt đã cho trở thành:

\(x^2=t^2-1\)

\(\Leftrightarrow t^2-x^2=1\)

\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)

Ta xét các TH:

\(t-x\) 1 -1
\(t+x\) 1 -1
\(t\) 1 -1
\(x\) 0

0

Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)

Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).

 Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)

 

Bình luận (0)
HY
Xem chi tiết
NK
11 tháng 6 2017 lúc 17:38

x + y = 0 hoặc y = 0

Bình luận (0)
TG
11 tháng 6 2017 lúc 17:45

kết quả là 

  y=0

    đs...

Bình luận (0)
VH
13 tháng 6 2017 lúc 18:00

đặt a = x - 1; b = y + 1.

khi đó ta có (a + b)2 = ab hay a2 + ab + b2 = 0.

khi đó suy ra a = b = 0 hay x = 1 và y = -1.
 

Bình luận (0)
PT
Xem chi tiết
QB
7 tháng 10 2017 lúc 8:37

nhân cái đầu với cái cuối

Bình luận (0)
TD
Xem chi tiết
TD
Xem chi tiết
KM
Xem chi tiết
AN
8 tháng 11 2016 lúc 21:29

Ta có

\(1\left(x+1\right)\left(x+2\right)\left(x+8\right)\left(x+9\right)=y^2\)

\(\Leftrightarrow1\left(x^2+10x+9\right)\left(x^2+10x+16\right)=y^2\)

Đặt x2 + 10x + 16 = a thì pt thành

a(a + 7) = y2

<=> 4a2 + 28a = 4y2

<=> (4a2 + 28a + 49) - 4y2 = 49

<=> (2a + 7)2 - 4y2 = 49

<=> (2a + 7 - 2y)(2a + 7 + 2y) = 49

<=> (2a + 7 - 2y, 2a + 7 + 2y) = (1, 49; 49, 1; 7, 7; - 1,- 49; - 49, - 1; - 7, - 7)

Thế vào rồi giải sẽ tìm được x,y

Bình luận (0)
KM
9 tháng 11 2016 lúc 11:26

thanks

Bình luận (0)
AN
9 tháng 11 2016 lúc 13:31

Đặt x2 + 4x + 9 = a mới đúng nhé. Nãy quên đổi lại

Bình luận (0)
LJ
Xem chi tiết
LN
7 tháng 5 2022 lúc 10:29

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25

x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0

(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0

(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ{(0;−6),(4;−2)...}

 
Bình luận (0)
DL
7 tháng 5 2022 lúc 11:28

\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)

nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\) 

                                                                ( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )

ta lập bảng :

       \(x+1\)           \(1\)         \(5\)         \(-1\)         \(-5\)
       \(y+1\)         \(-5\)          \(-1\)          \(5\)          \(1\) 
          \(x\)            \(0\)            \(4\)         \(-2\)          \(-6\) 
           \(y\)         \(-6\)          \(-2\)           \(4\)           \(0\)

\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)

Bình luận (0)
LA
Xem chi tiết
KS
4 tháng 1 2020 lúc 16:27

\(\Leftrightarrow2x^2-xy+x-y^2+8y-22=0\)

\(\Leftrightarrow-y^2+\left(8-x\right)y+2x^2+x-22=0\left(1\right)\)

Coi pt bậc 2 theo ẩn y , tham số là x , để(1) có nghiệm nguyên thì \(\Delta\ge0\) và là một chính phương với x nguyên 

\(\Delta=\left(8-x\right)^2+4\left(2x^2+x-22\right)=9x^2-12x-24=\left(3x-4\right)^2-8\)

Đặt \(\Delta=k^2\) với \(k\in Z\) 

\(\Rightarrow\left(3x-4\right)^2-8=k^2\Leftrightarrow\left(3x-4\right)^2-k^2=8\)

\(\Leftrightarrow\left(3x-4-k\right)\left(3x-4+k\right)=8=\left(-1\right).\left(-8\right)=\left(-2\right).\left(-4\right)=2.4=1.8\)(2)

Từ( 2) lần lượt thay các cặp ước của 8 vào ta tìm được x nguyên và sau đó thay x vào (1) ta sẽ tìm được y nguyên tương ứng 

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết