tìm x không âm biết
a) \(\sqrt{x}\)> 4
b) \(\sqrt{4x}\)\(\le\)4
c) \(\sqrt{4-x}\)\(\ge\)6
Tìm x biết:
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+15}=6\)
ĐKXĐ:\(x\ge-5\)
`sqrt{4x+20}-3sqrt{5+x}+4/3sqrt{9x+15}=6(x>=-5)`
`<=>sqrt{4(x+5)}-3sqrt{x+5}+4/3sqrt{9(x+5)}=6`
`<=>2sqrt{x+5}-3sqrt{x+5}+4sqrt{x+5}=6`
`<=>3sqrt{x+5}=6`
`<=>sqrt{x+5}=2`
`<=>x+5=4`
`<=>x=-1(tm)`
Vậy `x=-1`
Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\cdot\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow0\cdot\sqrt{x+5}=6\left(vôlý\right)\)
cho a,b,c là các số thục không âm . CMR :
\(a\sqrt{4a^2+5bc}+b\sqrt{4b^2+5ca}+c\sqrt{4c^2+5ab}\ge\left(a+b+c\right)^2\)
Tìm x không âm
a) 3\(\sqrt{4x}\)<\(\sqrt{9}\)
b) 4\(\sqrt{8x}\) > hoặc = 2
ĐKXĐ: `x>=0`
`a,3\sqrt(4x)<sqrt9`
`<=>6sqrt(x)<3`
`<=>sqrtx<1/2`
`=>x<1/4` kết hợp với ĐKXĐ có `0<=x<1/2`
KL....
`b, 4\sqrt(8x)>=2`
`<=>\sqrt(8x)>=1/2`
`=>8x>=1/4`
`<=>x>=1/32(TMĐK)`
KL...
Tìm x, biết:
a. \(\sqrt{6-4x+x^2}-x=4\)
b. \(\sqrt{4x^2-4x+1}+\sqrt{2x-1}=0\)với \(x\ge\frac{1}{2}\)
a) ĐKXĐ: \(x\ge-4\)
a) Ta có: \(\sqrt{6-4x+x^2}=x+4\Rightarrow\left(x+4\right)^2=x^2-4x+6\)
\(\Rightarrow x^2+8x+16=x^2-4x+6\Rightarrow4x+10=0\Rightarrow x=-\frac{5}{2}\left(loại\right)\)
Vậy pt vô nghiệm
b) \(\sqrt{4x^2-4x+1}+\sqrt{2x-1}=0\Rightarrow\sqrt{\left(2x-1\right)^2}+\sqrt{2x-1}=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{2x-1}+1\right)=0\Rightarrow x=\frac{1}{2}\)
Tìm x không âm, biết:
a) \(\sqrt{x}\le\sqrt{x+1}\)
b) \(\sqrt{x}>\sqrt{2-x}\)
a) Bpt luôn đúng với mọi x không âm
b) đk: \(x\le2\)
Có: \(\sqrt{x}>\sqrt{2-x}\Leftrightarrow x>2-x\)
\(\Leftrightarrow2x>2\Leftrightarrow x>1\)
Kết hợp với đk, ta được: \(1< x\le2\)
Câu 2: Tìm x biết:
a. \(\sqrt{x-1}=2\)
b. \(\sqrt{3x+1}=\sqrt{4x-3}\)
c. \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d. \(\sqrt{x^2-4x+4}=\sqrt{6+2\sqrt{5}}\)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
Tìm số x không âm , biết :
a) \(\sqrt{x}\)= 15
b) \(2\sqrt{x}\)= 14
c) 2\(2\sqrt{x}\) < 4
\(a.\sqrt{x}=15\)
\(\Leftrightarrow x=15^2=225\)
\(b.2\sqrt{x}=14\)
\(\Leftrightarrow\sqrt{x}=7\)
\(\Leftrightarrow x=7^2=49\)
\(c.22\sqrt{x}< 4\)
\(\Leftrightarrow\sqrt{x}< \dfrac{2}{11}\)
\(\Leftrightarrow x< \left(\dfrac{2}{11}\right)^2\)
\(\Leftrightarrow x< \dfrac{4}{121}\)
tìm x biết a,\(\sqrt{x^2-4x+4}=7\) b,\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\sqrt{9x+27}=6\)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-4x+4}=7\)
=>\(\sqrt{\left(x-2\right)^2}=7\)
=>|x-2|=7
=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)
b: ĐKXĐ: x>=-3
\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)
=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)
=>\(3\sqrt{x+3}=6\)
=>\(\sqrt{x+3}=2\)
=>x+3=4
=>x=1(nhận)
Cho a. b. c không âm và có tổng bằng 1. Chứng minh rằng:
\(\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
đặt \(S=\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\)
\(=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+b^2}+\frac{c^3}{4a^2c^2+c^2}\ge\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4a^2b^2+4b^2c^2+4c^2a^2+a^2+b^2+c^2}\)
xét hiệu:
1-4(a2b2+b2c2+c2a2)-a2-b2-c2
=2ab+2bc+2ca-4(a2b2+b2c2+c2a2)
=2ab(1-2ab)+2bc(1-2bc)+2ca(1-2ca)
ta có:
\(2ab\le\frac{\left(a+b\right)^2}{2}\le\frac{1}{2};2bc\le\frac{\left(b+c\right)^2}{2}\le\frac{1}{2};2ca\le\frac{\left(c+a\right)^2}{2}\le\frac{1}{2}\)
\(\Rightarrow2ab\left(1-2ab\right);2bc\left(1-2bc\right);2ca\left(1-2ca\right)\ge0\)
\(\Rightarrow1\ge4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2\)
\(\Rightarrow\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
\(\Rightarrow\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
=>đpcm
dấu"=" xảy ra khi 1 số=1;2 số còn lại =0