x^2-xy+x-y
Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Thank
x2y + xy2 - x- y
phân tích đa thức thành nhân tử theo pp nhóm hạng tử
\(X^2y+xy^2-x-y\)
\(=xy(x+y)-(x+y)=(xy-1)(x+y)\)
\(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
\(x^2y+xy^2-x-y=\left(x^2y+xy^2\right)-\left(x+y\right)=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử: x2y-xy2-3x+3y
x2y-xy2-3x+3y
=(x2y-xy2)-(3x-3y)
=xy(x-y)-3(x-y)
=(x-y).(xy-3)
bài 1)phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử và dùng hằng đẳng thức mn(x^2+y^2)+xy(m^2+n^2)
bài 2 )tìm x biết 0,25x^3+x^2+x=0
bài 2 :
0,25x3+x2+x=0
<=>0,25x3+0,5x2+0,5x2+x=0
<=>0,25x2(x+2)+0,5x(x+2)=0
<=>(x+2)(0,25x2+0,5x)=0
<=>(x+2)x(0,25x+0,5)=0
<=>x+2=0 hoặc x=0 hoặc 0,25x+0,5=0
=>x=-2 hoặc x=0 hoặc x=-2
vậy x=0 hoặc x=-2
phân tích đa thức sau thành nhân tử bằng phương pháp nhóm hạng tử :
a) x^4 + 25x^2 + 20x - 4
b) x^2(x^2 - 6) - x^2 + 9
c) ab(x^2 + y^2) - xy (a^2 + b^2)
phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
x2-4y2-2x+1
x+2a(x-y)-y
\(x^2-4y^2-2x+1=\left(x-1\right)^2-4y^2=\left(x-1-2y\right)\left(x-1+2y\right)\)
Bài 2:Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
3, x(x-1)-y(1-x)
4, x^2+6x^2y+12xy^2+8y^3
5, x^2-2xy+y^2-xz+yz
6, x^2-y^2-x+y
9, x^3+x^2-xy+xy+y^2+y^3
10, x^2-6(x+3)-9
\(3,x\left(x-1\right)-y\left(1-x\right)=\left(x+y\right)\left(x-1\right)\\ 4,x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\\ 5,x^2-2xy+y^2-xz+yz=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y-z\right)\left(x-y\right)\\ 6,x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\\ 9,x^3+x^2-xy+xy+y^2+y^3\\ =x^2\left(x+1\right)+y^2\left(x+1\right)=\left(x^2+y^2\right)\left(x+1\right)\\ 10,x^2-6\left(x+3\right)-9\\ =x^2-6x-18-9\\ =x^2-6x-27=\left(x-9\right)\left(x+3\right)\)
10: \(x^2-6\left(x+3\right)-9\)
\(=x^2-6x-18-9\)
\(=x^2-6x-27\)
\(=\left(x-9\right)\left(x+3\right)\)
phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
x-y-a(x-y)
nhanh hanh tớ tik
\(x-y-a\left(x-y\right)\)
\(=\left(x-y\right)-a\left(x-y\right)\)
\(=\left(x-y\right)\left(1-a\right)\)
\(x-y-a\left(x-y\right)\)
\(=\left(x-y\right)-a\left(x-y\right)\)
\(=\left(1-a\right).\left(x-y\right)\)
x - y - a ( x - y )
= ( x - y ) - a ( x - y )
= ( 1 - a ) ( x - y)
bài 1 : phân tích đa thứ thành nhân tử bằng các phương pháp đã học ( đặt nhân tử chung ; dùng những hằng đẳng thức ; nhóm nhiều hạng tử ; đa thức bậc 2 )
a, xy + y^2 - x - y
b, 25- x^2 + 4xy - 4y^2
c, x^2 - 4x + 3
d, y^2.(x - 1 ) - 7y^3 + 7xy^3
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
c) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)
d) \(y^2\left(x-1\right)-7y^3+7xy^3\)
\(=y^2\left(x-1-7y+7xy\right)\)
\(=y^2\left[\left(x-1\right)-7y\left(1-x\right)\right]=y^2\left(x-1\right)\left(1+7y\right)\)
a)
\(xy+y^2-x-y\\ =\left(xy-x\right)+\left(y^2-y\right)\\ =x\left(y-1\right)+y\left(y-1\right)\\ =\left(y-1\right)\left(x+y\right)\)
b)
\(25-x^2+4xy-4y^2\\ =25-\left(x^2-4xy-4y^2\right)\\ =5^5-\left(x-y\right)^2\\ =\left(5+x-y\right)\left(5-x+y\right)\)
Bài 1:Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
c, 3x^2-3xy-5x+5y
d, x^3-3x^2-4x+12
e, 45+x^3-5x^2-9x
\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\\ x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\\ 45+x^3-5x^2-9x=x^2\left(x-5\right)-9\left(x-5\right)=\left(x-3\right)\left(x+3\right)\left(x-5\right)\)