a) 1/2+1/3+1/4+1/5+...+1/9+1/10
b) 1/12+1/20+1/30+1/42+1/56+1/72+1/90
a) N = 1/2 + 1/6+ 1/12 + 1/20 + 1/30 +1/42 + 1/56 + 1/72 +1/90
b) 5/8 + 2/9 -2/5 + 3/8 + 4/9 + 1/3 - 3/5 =
c) 4 1/5 + 5 1/3 - 2 2/3 x 3 1/5 + 9/25 : 9/20 =
Tinh hon so sau :
1 1/2 +2 1/6 + 3 1/12 + 4 1/20 + 5 1/30 + 6 1/42 + 7 1/56 + 8 1/72 +9 1/90 +1/10
\(1\frac{1}{2}+2\frac{1}{6}+3\frac{1}{12}+4\frac{2}{20}+5\frac{1}{30}+6\frac{1}{42}+7\frac{1}{56}+8\frac{1}{72}+9\frac{1}{90}+\frac{1}{10}\)\(=\frac{3}{2}+\frac{13}{6}+\frac{37}{12}+\frac{81}{20}+\frac{151}{30}+\frac{253}{42}+\frac{393}{56}+\frac{577}{72}+\frac{811}{90}+\frac{1}{10}=46\)
k nha
๖ۣۜH๖ۣۜU๖ۣۜY ๖ۣۜR๖ۣۜI๖ۣۜO
Đầu tiên , cộng các phần nguyên lại với nhau , ta có :
( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 ) + ( 12 +16 +112 +120 +130 +142 +156 +172 +190 +110 )
= 45 + (16 +130 )+12 +112 +120 +142 +156 +172 +190 +110
sau khi cộng trong ngoặc , ta được 6 / 30 , rút gọn tối giản còn 1 / 5
= 45 + (15 +120 )+12 +112 +142 +156 +172 +190 +110
sau khi cộng trong ngoặc và rút gọn tối giản , ta được 1 / 4
= 45 + (14 +12 )+112 +142 +156 +172 +190 +110
sau khi cộng trong ngoặc rồi rút gọn , ta được 3 / 4
= 45 + (34 +112 )+142 +156 +172 +190 +110
rút gọn lại ta được 5 / 6
= 45 + (56 +142 )+156 +172 +190 +110
rút gọn tối giản ra 6 / 7
= 45 + (67 +156 )+172 +190 +110
sau khi tính trong ngoặc rút gọn được 7 / 8
= 45 + (78 +172 )+190 +110
tính trong ngoặc rồi rút gọn ra 8 / 9
= 45 + (89 +190 )+110
cũng rút gọn tiếp ta được 9 / 10
= 45 + (910 +110 )
= 45 + 1
= 46
9/10-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
Ta có: \(\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
= \(\frac{9}{10}-\frac{1}{10.9}-\frac{1}{9.8}-\frac{1}{8.7}-\frac{1}{7.6}-\frac{1}{6.5}-\frac{1}{5.4}-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
= \(\frac{9}{10}-\frac{1}{10}-\frac{1}{9}-...-\frac{1}{2}-\frac{1}{1}\)
= \(\frac{9}{10}+\frac{1}{10}-\frac{1}{1}\)
= 1 - 1 = 0
Vậy kết quả của phép tính là 0
9/10-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
Ta có :
9/10-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
= 9/10 -( 1/90 + 1/72 + ... + 1/2)
= 9/10 - { 1/( 9.10) + 1/(9.8) + ... + 1/( 2.1)}
= 9/10 - ( 1/9 - 1/10 + 1/8 - 1/9 + ...+ 1 - 1/2) ( 1/90 = 1/(9.10) = 1/9 - 1/10)
= 9/10 - ( 1 - 1/10)
= 9/10 - 9/10
= 0
9/10-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2 = ?
9/10-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
=9/10-(1/9*10+1/8*9+...+1/1*2)
=9/10-(1/9-1/10+...+1-1/2)
=9/10-(-1/10+1)=9/10-9/10=0
9/10 +1/90++1/72+1/56+1/42+1/30+1/20+1/12+1/6+1/2
= 9/1.10 + 1/9.10 + 1/8.9 + 1/7.8 + 1/6.7 +1/5.6 + 1/4.5 +1/3.4 +1/2.3 + 1/1.2
= 1/1.2 + 1/2.3 + 1/3.4 + ... + 9/1.10 ( viết ngược lại)
= 1-1/2 + 1/2 -1/3 + 1/3 +....-1/10
= 1 - 1/10
= 9/10
tính:9/10-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
A)7^8:[2^9-1^18]+7^8.[1^36-5^12]. B)[-0,75-1^4]:(-5)+1^15-(-1^5):(-3)
C)9^10-1^90-1^72-1^56-1^42-1^30-1^20-1^12-1^6-1^2 D)1+1^2.(1+2)+1^3.(1+2+3)+1^4.(1+2+3+4)+...+1^16.(1+2+3+4+...+16)
Dấu ^ là dấu gạch ngang của phản số nhé
a , \(\frac{7}{8}:\frac{1}{6}+\frac{7}{8}.\frac{-7}{18}\)
= \(\frac{21}{4}+\frac{-49}{144}=\frac{707}{144}\)
b, -1 : (-5) + \(\frac{1}{15}-\frac{-1}{15}\)
= \(\frac{1}{5}+0=\frac{1}{5}\)
c, \(\frac{9}{10}-\frac{1}{10.9}-\frac{1}{9.8}-\frac{1}{8.7}-\frac{1}{7.6}-\frac{1}{6.5}-\frac{1}{5.4}-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
= \(\frac{9}{10}-\frac{10-9}{10.9}-\frac{9-8}{9.8}-\frac{8-7}{8.7}-\frac{7-6}{7.6}-\frac{6-5}{6.5}-\frac{5-4}{5.4}-\frac{4-3}{4.3}-\frac{3-2}{3.2}.\frac{2-1}{2.1}\)
= \(\frac{9}{10}-1-\frac{1}{10}-1-\frac{1}{9}-1-\frac{1}{8}-1-\frac{1}{7}-1-\frac{1}{6}-1-\frac{1}{5}-1-\frac{1}{4}-1-\frac{1}{3}-1-\frac{1}{2}\)
= \(\frac{9}{10}-\left(1+1+1+1+1+1+1+1+1\right)-\left(\frac{1}{10}+\frac{1}{9}+\frac{1}{8}+...+\frac{1}{2}\right)\)
= \(\frac{9}{10}-9-1,928=\frac{9}{10}-7,071=-6.171\)
1)Tinh 9/10-1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(=\dfrac{9}{10}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=\dfrac{9}{10}-\left(1-\dfrac{1}{10}\right)=\dfrac{9}{10}-\dfrac{9}{10}=0\)
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-...-\dfrac{1}{6}-\dfrac{1}{2}=-\left(-\dfrac{9}{10}+\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+...+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
\(=-\left(-\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=-\left(-\dfrac{9}{10}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)\)
\(=-\left(-\dfrac{9}{10}+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=-\left(-\dfrac{9}{10}+1-\dfrac{1}{10}\right)=-\left(-\dfrac{9}{10}+\dfrac{9}{10}\right)=0\)
Ta có :
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{9.10}+\dfrac{1}{9.8}+\dfrac{1}{7.6}+\dfrac{1}{6.5}+\dfrac{1}{5.4}+\dfrac{1}{4.3}+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{10}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{8}+..........+\dfrac{1}{2}-\dfrac{1}{1}\right)\)
\(=\dfrac{9}{10}-\left(1-\dfrac{1}{10}\right)\)
\(=\dfrac{9}{10}-\dfrac{9}{10}=0\)