Tim Min x\(\sqrt{1-x}\) 0<x<1
Cho B= \(\frac{x-2\sqrt{x}+4}{\sqrt{x}}\)(voi x>0)
Tim min B
Ta có: \(B=\frac{x}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}+\frac{4}{\sqrt{x}}=\sqrt{x}-2+\frac{4}{\sqrt{x}}=\left(\sqrt[4]{x}\right)^2-2.\sqrt[4]{x}.\frac{2}{\sqrt[4]{x}}+\left(\frac{2}{\sqrt[4]{x}}\right)^2+2\)
\(=\left(\sqrt[4]{x}-\frac{2}{\sqrt[4]{x}}\right)^2+2\ge2\)
Vậy Min B = 2 khi x = 4.
Chúc em học tốt :)
AI NHANH NHAT , DUNG THI TICK
Cho x, y >0 , x+y = 1. Tim Min
P = \(\frac{x+2y}{\sqrt{1-x}}\) +\(\frac{y+2x}{\sqrt{1-y}}\)
Cho x,y>0 va \(x+y\le1\).Tim min P=\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)\(=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}.\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}.\)
Cho x,y,z>0 va xyz=1. Tim Min cua \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
tìm min, max \(C=\left(x-3\right)\left(7-x\right)\)với \(3\le x\le7\)
tìm min, max \(D=\left(2x-1\right)\left(3-x\right)\) với \(\dfrac{1}{2}\le x\le3\)
tìm min \(E=\dfrac{\left(x+2017\right)^2}{x}\) với x>0
tìm min \(F=\dfrac{\left(4+x\right)\left(2+x\right)}{x}\) với x>0
tim min \(G=x^2+\dfrac{2}{x^3}\)với x>0
tìm min, max \(H=\sqrt{1-2x}+\sqrt{x+8}\)
Ai làm được câu nào thì giúp mình nha!
Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5
\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)
Cô - si cho 5 số lên mạng search cách chứng minh nhé
\(G=\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{x^3}+\dfrac{1}{x^3}\ge5\sqrt[5]{\dfrac{1}{3^3}.\dfrac{x^2.x^2.x^2}{x^3.x^3}}=5\sqrt[5]{\dfrac{1}{27}}\)
Dấu "=" xảy ra <=> \(\dfrac{1}{3}x^2=x^3\)
<=> \(x^5=3\)
<=> \(x=\sqrt[5]{3}\)
Tim Min : A=1/(x^2) + x^2 (x khac 0)
A=\(\frac{1}{x^2}+x^2=\frac{1}{x^2}+2.x\frac{1}{x}+x^2-2=\left(\frac{1}{x}+x\right)^2-2\ge-2\)
vậy minA=-2
cho x,y>0 và x+y=1 tìm min p=\(\dfrac{x}{\sqrt{1-x}}\)+\(\dfrac{y}{\sqrt{1-y}}\)
Lời giải:
Do $x+y=1$ nên:
$P=\frac{x}{\sqrt{x+y-x}}+\frac{y}{\sqrt{x+y-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}$
$=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}$
$\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}=\frac{1}{x\sqrt{y}+y\sqrt{x}}$ (áp dụng BĐT Cauchy-Schwarz)
Áp dụng BĐT Bunhiacopxky:
$(x\sqrt{y}+y\sqrt{x})^2\leq (x+y)(xy+xy)=2xy(x+y)\leq \frac{(x+y)^2}{2}(x+y)=\frac{1}{2}$
$\Rightarrow x\sqrt{y}+y\sqrt{x}\leq \frac{\sqrt{2}}{2}$
$\Rightarrow P\geq \frac{1}{x\sqrt{y}+y\sqrt{x}}\geq \frac{1}{\frac{\sqrt{2}}{2}}=\sqrt{2}$
Vậy $P_{\min}=\sqrt{2}$. Giá trị này đạt tại $x=y=\frac{1}{2}$.
tìm Min P=\(x-3\sqrt{x}+1\), x≥0
\(B = {x +\sqrt{x}+1 \over \sqrt{x}}\) (x >= 0, x khác 0, khác 1)
Tìm Min B