Thu gọn
a) \(\frac{y}{x}.\sqrt{\frac{x^2}{y^4}}\)với x >0; y khác 0
b) \(5xy.\sqrt{\frac{x^2}{y^6}}\)với x < 0
c) \(0.2x^3y^3.\sqrt{\frac{16}{x^4y^8}}\)Với x và y khác 0
Giải từng bước giúp mình với nhé! Cảm ơn nhiều ạ!
rút gọn
a, \(\dfrac{x}{y}\sqrt{\dfrac{x^2}{y^4}}\) với x>0, y khác 0
b, \(2y^2\sqrt{\dfrac{x^4}{4y^2}}\) với y<0
\(a,=\dfrac{x}{y}\cdot\dfrac{\left|x\right|}{y^2}=\dfrac{x^2}{y^3}\\ b,=2y^2\cdot\dfrac{x^2}{\left|2y\right|}=\dfrac{2x^2y^2}{-2y}=-x^2y\)
Rút gọn các biểu thức:
a)\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)với x>0 và \(x\ne1\)
b)\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}\)với x>0 và \(x\ne4\)
c)\(5\sqrt{\frac{x}{y}}-4\sqrt{\frac{y}{x}}+\sqrt{\frac{1}{xy}}\)với x>0, y>0
a) \(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}=\frac{1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(1+\sqrt{x}\right)}=\frac{2\sqrt{x}}{x-1}\)( x > 0 ; x ≠ 1 )
b) \(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)( x > 0 ; x ≠ 4 )
a) Với \(x>0\)và \(x\ne1\)ta có:
\(\frac{1}{\sqrt{x}-1}+\frac{1}{1+\sqrt{x}}+1\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1+\sqrt{x}-1+x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Với \(x>0\)và \(x\ne4\)ta có:
\(\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{4-x}=\frac{1}{\sqrt{x}+2}-\frac{2}{\sqrt{x}-2}-\frac{\sqrt{x}}{x-4}\)
\(=\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)-2\left(\sqrt{x}+2\right)+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2-2\sqrt{x}-4+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{-6}{x-4}\)
Tính
a)\(\frac{\sqrt{a-2\sqrt{ab}+b}}{\sqrt{\sqrt{a}-\sqrt{b}}}\) với \(a>b>0\)
b)\(\frac{\sqrt{x-3}}{\sqrt{\sqrt{x}+\sqrt{3}}}:\frac{\sqrt{\sqrt{x}-\sqrt{3}}}{\sqrt{3}}\)với \(x>0\)
c)\(2y^2\sqrt{\frac{x^4}{4y^2}}\)với \(y< 0\)
d)\(\frac{y}{x}.\sqrt{\frac{x^2}{y^4}}\)với \(x>0,y\ne o\)
e)\(5xy.\sqrt{\frac{25x^2}{y^6}}\)với \(x< 0,y>0\)
a)\(\frac{\sqrt{a-2\sqrt{ab}+b}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\frac{\sqrt{\left(\sqrt{a}-\sqrt{b}\right)^2}}{\sqrt{\sqrt{a}-\sqrt{b}}}=\sqrt{a}-\sqrt{b}\) (vì a > b > 0)
b) \(\frac{\sqrt{x-3}}{\sqrt{\sqrt{x}+\sqrt{3}}}:\frac{\sqrt{\sqrt{x}-\sqrt{3}}}{\sqrt{3}}=\frac{\sqrt{3}.\sqrt{x-3}}{\sqrt{\left(\sqrt{x}+\sqrt{3}\right)\left(\sqrt{x}-\sqrt{3}\right)}}=\frac{\sqrt{3\left(x-3\right)}}{\sqrt{x-3}}=\sqrt{3}\)
c) \(2y^2\sqrt{\frac{x^4}{4y^2}}=2y^2\cdot\frac{x^2}{-2y}=-x^2y\) (vì y < 0)
d) \(\frac{y}{x}\cdot\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}\cdot\frac{x}{y^2}=\frac{1}{y}\)(vì x > 0)
e) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\) (Vì x < 0, y > 0)
Bài 1: Rút gọn biểu thức:
\(A=\left(\frac{2\sqrt{xy}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{2\sqrt{x}+2\sqrt{y}}\right).\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\) Với x>0, y>0, x#y
Ta có \(A=\left(\frac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}+\frac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
\(=\left(\frac{4\sqrt{xy}+\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\) (Quy đồng biểu thức đầu và đổi dấu số hạng cuối)
\(=\left(\frac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1.\)
Vậy giá trị biểu thức \(A=1.\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
Cho biểu thức:\(\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}-\sqrt{y}}+\frac{3\sqrt{x}}{y-x}\)
a) Rút gọn
b) Tính A khi x=4, y=9
c) C/m : A<0 với x>y>0
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x\ne y\end{matrix}\right.\)
Gọi biểu thức trên là A , ta có:
\(A=\frac{2\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}+\frac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}-\frac{3\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\\ =\frac{2\sqrt{x}-2\sqrt{y}+\sqrt{x}+\sqrt{y}-3\sqrt{x}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\\ =\frac{-\sqrt{y}}{x-y}\left(=\frac{\sqrt{y}}{y-x}\right)\)
b) Với x=4 ; y=9 ta có:
\(A=\frac{\sqrt{9}}{9-4}=\frac{3}{5}\)
c) Ta có: với x>y>0 thì A<=>\(\left\{{}\begin{matrix}\sqrt{y}>0\\x>y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y}>0\\y-x< 0\end{matrix}\right.\Leftrightarrow A< 0\)
Vậy A<0 với mọi x>y>0
Rút gọn biểu thức sau
a/ A=\(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\frac{x-y}{\sqrt{x}-\sqrt{y}}\)Với x>0 ; y>0 ;x#y
b/ B=\(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
c/ C=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
d/ D=\(\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{6-3\sqrt{3}}\)
Chứng minh biểu thức sau không phụ thuộc vào biến:
\(\left(\frac{2\sqrt{xy}}{x-y} +\frac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}\right).\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{y}{\sqrt{y}-\sqrt{x}}\)với x>0 ; y>0 ; x # y
1,Rút gọn
A=(\(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\))x(x-\(\dfrac{x-4}{\sqrt{x}-2}\))với x≥0;x≠4
2,Xác định a,b để đồ thị hàm số y=ax+b đi qua điểm A(2;1) vàB(1;2)
\(1,A=\dfrac{2x+1-x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\left(x-\sqrt{x}-2\right)\\ A=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\left(x+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+1}\\ 2,\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\Leftrightarrow y=-x-3\)