Chứng minh: nếu a + 4b chia hết cho 13 (a, b thuộc số tự nhiên ) thì 10a + b chia hết cho 13
bài 1: chứng minh rằng
nếu 10a + b chia hết cho 13 thì a + 4b chia hết cho 13. Với a,b là các số tự nhiên.
Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)
\(\Rightarrow b=13k-10a\)
\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)
\(=a+52k-40a\)
\(=52k-39a\)
\(=13\left(4k-3a\right)⋮13\)
Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)
cho a,b thuộc tập hợp số tự nhiên
Biết a + 4b chia hết cho 13. Chứng minh 10a + b chia hết cho 13
Biết 3a + 2b chia hết cho 17. Chứng minh 10a + b chia hết cho 17
Biết a -5b chia hết cho 17. Chứng minh 10a + b chia hết cho 17
cho a+4b chia hết cho 13(a,b thuộc tập tự nhiên)
Chứng minh 10a+b chia hết cho 13
10a+b=13a+13b-(3a+12b)=13(a+b)-3(a+4b)
13(a+b) chia ết cho 13
a+4b chia hết cho 13 => 3(a+4b) chia hết cho 13
=> 10a+b chia hết cho 13
a+4b chia hết cho 13 thì 10.(4a+b)cũng chia hết cho 13
mà 10.(a+4b)=10a+40b=10a+b+39b
mà 39b chia hết cho 13 nên 10a+b cũng chia hết cho39
Cho a, b thuộc N . Chứng minh: Nếu a+4b chia hết cho 13 thì 10a+b chia hết cho 13
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1).
Lấy (1) - 39b (luôn chia hết cho 13) đc 10a +b
\(\Rightarrow\) 10a + b chia hết cho 13. (đpcm)
Ngược lại cũng tương tự.
a+4b chia hết cho 13
=>10(a+4b)chia hết cho 13
=>10a+40bchia hết cho 13 (1)
giả sử 10a+b chia hết cho 13 (2)
từ (1)và (2)
=>(10a+40b)-(10a+40b)chia hết cho 13
=>10a+40b-10a-40b chia hết cho 13
=>39a chia hết cho 13
=>13(3a)chia hết cho 13(thỏa mãn)☺
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1).
Lấy (1) - 39b (luôn chia hết cho 13) đc 10a +b
⇒ 10a + b chia hết cho 13. (đpcm)
\
Chứng minh rằng : a, n.(n+8) .(n+13) chia hết cho 3
b,Nếu 10a+ b chia hết cho 13 thì a+4b chia hết cho 13. Với a,b là các số tự nhiên
10a+b chia hết cho 13
=> 40a +4b-49a chia hết cho 13
hay a+4b chí hết cho 13
cho a, b là số tự nhiên chứng minh rằng a+4b chia hết cho 13 klhi và chỉ khi 10a+b chia hết cho 13
Ta xét tổng: A= 3( a+ 4b)+( 10a+ b)
A= 3a+ 12b+ 10a+ b.
A= 13a+ 13b\(⋮\) 13.
=> A\(⋮\) 13.
Vì 10a+ b\(⋮\) 13.
=> 3( a+ 4b)\(⋮\) 13.
Mà 3 không\(⋮\) 13.
=> a+ 4b\(⋮\) 13.
Vậy a+ 4b\(⋮\) 13 khi và chỉ khi 10a+ b\(⋮\) 13.
Đặt A= a + 4b
B= 10a + b
Ta có: 10A- B= 10(a +4b) - (10a +b)
= 10a + 40b - 10a - b
= (10a - 10a) + (40b - b)
= 0 + 39b
= 39b
= 13 . 3b chia hết cho 13
=> 10A - B chia hết cho 13
- Nếu A chia hết cho 13 =>10A chia hết cho 13 => B chia hết cho 13
hay a + 4b chia hết cho 13 =>10a + b chia hết cho 13
- Nếu B chia hết cho 13 => 10A chia hết cho 13 mà (10, 13) = 1 => A chia hết cho 13
hay 10a + b chia hết cho 13 => a + 4b chia hết cho 13
Vậy a + 4b chia hết cho 13 <=> 10a + b chia hết cho 13.
Chúc bạn học tốt!
Đặt A= a + 4b
B= 10a + b
Ta có: 10A- B= 10(a +4b) - (10a +b)
= 10a + 40b - 10a - b
= (10a - 10a) + (40b - b)
= 0 + 39b
= 39b
= 13 . 3b chia hết cho 13
=> 10A - B chia hết cho 13
- Nếu A chia hết cho 13 =>10A chia hết cho 13 => B chia hết cho 13
hay a + 4b chia hết cho 13 =>10a + b chia hết cho 13
- Nếu B chia hết cho 13 => 10A chia hết cho 13 mà (10, 13) = 1 => A chia hết cho 13
hay 10a + b chia hết cho 13 => a + 4b chia hết cho 13
Vậy a + 4b chia hết cho 13 <=> 10a + b chia hết cho 13
CHÚC BẠN HỌC TỐT.
Cho a;b là các số tự nhiên thỏa mãn a+4b chia hết cho 13.Chứng minh rằng 10a+b cũng chia hết cho 13
Ta có : a + 4b chia hết cho 13
Suy ra : 10(a + 4b) chia hết cho 13
<=> 10a + 40b chia hết cho 13
<=> [(10a + b) + 39b] chia hết cho 13
Mà b là số tự nhiên và 39 chia ết cho 13 nên 39b chia hết cho 13
Vậy 10a + b chia hết cho 13 (đpcm)
Vì a + 4b chia hết cho 13 nên 10(a+4b) chia hết cho 13
10a+40b chia hết cho 13
(10a+b)+39b chia hết cho 13
Mà 39 chia hết cho 13 nên 39b chia hết cho 13
=> 10a+b chia hết cho 13
Vây: nếu a+4b chia hết cho 13 thì 10a+bchia hết cho 13
Vì : a+4b chia hết cho 13 => 10(a+4b) chia hết cho 13
Ta có : 10(a+4b) chia hết cho 13
=10a+40b chia hết cho 13
=(10a+b)+39b chia hết cho 13
Vì 39b chia hết cho 13 => 10a+b chia hết cho 13
với a và b là số tự nhiên, nếu 10a+b chia hết cho 13 thì a+4b chia hết cho số nào?
A.3 B.5 C.26 D.13
Cho biết : a + 4b chia hết cho 13 ( a,b là số tự nhiên)
Chứng minh rằng: 10a + b chia hết cho 13
Ta có : 13a + 13b chia hết cho 13 và a + 4b chia hết cho 13 => 3a + 12b chia hết cho 13
=> ( 13a + 13b ) - ( 3a + 12b ) chia hết cho 13
=> 10a + b chia hết cho 13
=> đpcm