Những câu hỏi liên quan
EH
Xem chi tiết
H24
11 tháng 5 2021 lúc 9:49

Với mọi số thực ta luôn có:

`(a-b)^2+(b-c)^2+(c-a)^2>=0`

`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2>=0`

`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`<=>3(a^2+b^2+c^2)>=a^2+b^2+c^2+2(ab+bc+ca)`

`<=>3(a^2+b^2+c^2)>=(a+b+c)^2=4`

`<=>a^2+b^2+c^2>=4/3`

Dấu "=" xảy ra khi `a=b=c=2/3`

~Quang Anh Vũ~

Bình luận (0)
CT
Xem chi tiết
DL
2 tháng 6 2016 lúc 23:56
\(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=\left(a+b+c\right)^2-6.\)\(P=\left(a+b+c\right)^2-6-6\left(a+b+c\right)+2017=\left(a+b+c\right)^2-6\left(a+b+c\right)+9+2002\)

\(=\left(a+b+c-3\right)^2+2002\)

Mà \(\left(a+b+c-3\right)^2\ge0\)nên GTNN của P bằng 2002.
Bình luận (0)
FS
3 tháng 6 2016 lúc 6:19

đúng rồi đấy

Bình luận (0)
H24
3 tháng 6 2016 lúc 7:15

a 2 + b 2 + c 2 = a + b + c 2 − 2 ab + bc + ca = a + b + c 2 − 6. P = a + b + c 2 − 6 − 6 a + b + c + 2017 = a + b + c 2 − 6 a + b + c + 9 + 2002 = a + b + c − 3 2 + 2002 Mà a + b + c − 3 2 ≥ 0nên GTNN của P bằng 2002

Bình luận (0)
VH
Xem chi tiết
TC
6 tháng 8 2021 lúc 15:28

undefined

Bình luận (0)
HT
Xem chi tiết
NL
27 tháng 7 2021 lúc 22:30

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)

\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)

\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)

\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)

\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)

\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)

Bình luận (0)
H24
Xem chi tiết
NB
7 tháng 12 2020 lúc 19:22

bạn kiểm tra lại xem có sai đề không

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TU
Xem chi tiết
NL
18 tháng 8 2021 lúc 19:24

\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)

\(\Rightarrow-3\le a+b+c\le3\)

\(T_{max}=3\) khi \(a=b=c=1\)

\(T_{min}=-3\) khi \(a=b=c=-1\)

Bình luận (1)
TN
Xem chi tiết
H24
Xem chi tiết