Những câu hỏi liên quan
LD
Xem chi tiết
H24
12 tháng 4 2018 lúc 7:39

More images for 1−14 +14 −17 +...+197 −1100 =0,99·x2009 100100 −1100 =0,99x2009 99100 =0,99x2009 =>0,99x*100=2009*9999x=2009*99=>x=2009Vậy x=2009 Đúng 4 Sai 0 Diana Andrea đã chọn câu trả lời này.Đỗ Lê Tú Linh 26/12/2015 lúc 22:10 Báo cáo sai phạm

Bình luận (0)
LT
Xem chi tiết
NQ
10 tháng 3 2022 lúc 14:34

ta nhân 3 cả hai vế, được : 

\(\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{102.105}\right)x=3\)

hay 

\(\left(\frac{4-1}{1.3}+\frac{7-4}{4.7}+...+\frac{105-102}{102.105}\right)x=3\) \(\Leftrightarrow\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+..+\frac{1}{102}-\frac{1}{105}\right)x=3\)

\(\Leftrightarrow\left(1-\frac{1}{105}\right)x=3\Leftrightarrow\frac{104}{105}.x=3\Leftrightarrow x=\frac{315}{104}\)

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
TT
16 tháng 7 2016 lúc 15:18

S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1

=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1

=1-1/N+1

->S<1

NHA!

Bình luận (0)
TM
16 tháng 7 2016 lúc 15:20

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\)

=>\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

=>\(S=1-\frac{1}{n+3}< 1\)

Vậy S<1 (đpcm)

Bình luận (0)
H24
16 tháng 7 2016 lúc 15:23

S= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{n}-\frac{1}{n+3}\)

=> S = 1 - \(\frac{1}{n+3}\)

Bình luận (0)
HN
Xem chi tiết
NT
17 tháng 6 2023 lúc 13:28

a: =1/2-1/3+1/3-1/4+...+1/99-1/100

=1/2-1/100=49/100

b; =5/3(1-1/4+1/4-1/7+...+1/100-1/103)

=5/3*102/103

=510/309=170/103

c: =1/2(1/3-1/5+1/5-1/7+...+1/49-1/51)

=1/2*16/51=8/51

Bình luận (0)
KN
Xem chi tiết
NM
15 tháng 5 2017 lúc 10:57

\(3B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}.\)

\(3B=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{103-100}{100.103}\)

\(3B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}=1-\frac{1}{103}=\frac{102}{103}\)

\(B=\frac{102}{3.103}=\frac{34}{103}\)

Bình luận (0)
NM
15 tháng 5 2017 lúc 10:54
3B=3/1.4+3/4.7+3/7.10+...+3/100.103 3B=(4-1)/1.4+(7-4)/4.7+(10-7)/7.10+...+(103-100)/100.103 3B=1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103=1-1/103=102/103 B=102/(3.103)=34/103
Bình luận (0)
BT
15 tháng 5 2017 lúc 11:01

B=\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+......+\frac{1}{100.103}\)

B=\(\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{100.103}\right)\)

B=\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+......+\frac{1}{100}-\frac{1}{103}\right)\)

B=\(\frac{1}{3}.\left(1-\frac{1}{103}\right)\)

B=\(\frac{1}{3}.\frac{102}{103}\)

B=\(\frac{34}{103}\)

Bình luận (0)
PD
Xem chi tiết
NH
20 tháng 8 2023 lúc 11:53

Để olm.vn giúp em nhá

C = \(\dfrac{1}{1.4}\) + \(\dfrac{1}{4.7}\) + \(\dfrac{1}{7.11}\)+...+ \(\dfrac{1}{994.997}\) + \(\dfrac{1}{997.1000}\)

C = \(\dfrac{1}{3}\).( \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.11}\)+...+ \(\dfrac{3}{994.997}\)\(\dfrac{3}{997.1000}\))

C = \(\dfrac{1}{3}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\)-\(\dfrac{1}{11}\)+...+ \(\dfrac{1}{994}\)\(\dfrac{1}{997}\)\(\dfrac{1}{997}\) - \(\dfrac{1}{1000}\))

C = \(\dfrac{1}{3}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{1000}\))

C = \(\dfrac{1}{3}\)\(\dfrac{999}{1000}\)

C = \(\dfrac{333}{1000}\)

Bình luận (0)
PD
20 tháng 8 2023 lúc 11:46

Dấu chấm là dấu nhân nhé

Bình luận (0)
DT
Xem chi tiết
P1
Xem chi tiết
CC
23 tháng 8 2019 lúc 21:06

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\right).\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{97}\right)\)

\(=\frac{1}{3}.\frac{96}{97}\)

\(=\frac{32}{97}\)

học tốt 

Bình luận (0)
HD
23 tháng 8 2019 lúc 21:06

3A = 3(1/1.4 + 1/4.7 + 1/7.10 + ...... + 1/94.97)

3A=1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - ........ - 1/97

3A = 1-1/97

3A = 96/97

A = 32/97

Oke nha bạn

Bình luận (0)
EC
23 tháng 8 2019 lúc 21:08

A = \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{94.97}\)

\(3A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\)

\(3A=1-\frac{1}{97}\)

\(3A=\frac{96}{97}\)

\(A=\frac{32}{97}\)

Bình luận (0)
HN
Xem chi tiết
XO
17 tháng 11 2019 lúc 7:53

b) S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)

\(=\frac{1}{2}.\frac{4949}{9900}\)

\(=\frac{4949}{19800}\)

Bình luận (0)
 Khách vãng lai đã xóa