cho hi đa thức m và n
m=x^2-4x+3
n=-x^2+3x-2
m.n
1) tìm giá trị lớn nhất của biểu thức:
A= -x2 - y2 +4x -4y +2
2) Tìm GTNN của biểu thức
A= 4x2 + 4x +2017
3)tìm các số nguyên n để đa thức 3n3 + 10n2 -8 chia hết cho đa thức 3n+1
4) tìm x
cho phân thức A= 3x2 + 3x / (x+1)(2x-6)
a) Tìm điều kiện xác định của A
B) tìm x để A = 0
1) \(A=-x^2-y^2+4x-4y+2\)
\(\Leftrightarrow A=-x^2+4x-4-y^2-4y-4+4+4+2\)
\(\Leftrightarrow A=-\left(x^2-4x+4\right)-\left(y^2+4y+4\right)+\left(4+4+2\right)\)
\(\Leftrightarrow A=-\left(x-2\right)^2-\left(y+2\right)^2+10\)
Vậy GTLN của \(A=10\) khi \(\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
2) \(A=4x^2+4x+2017\)
\(\Leftrightarrow A=4x^2+4x+1-1+2017\)
\(\Leftrightarrow A=\left(4x^2+4x+1\right)+2016\)
\(\Leftrightarrow A=\left(2x+1\right)^2+2016\)
Vậy GTNN của \(A=2016\) khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)
3) Ta có:
\(3n^3+10n^2-8⋮3n+1\)
\(\Rightarrow\left(3n^3+n^2\right)+9n^2-8⋮3n+1\)
\(\Rightarrow n^2\left(3n+1\right)+9n^2-8⋮3n+1\)
\(\Rightarrow9n^2-8⋮3n+1\)
\(\Rightarrow\left(9n^2-1\right)-7⋮3n+1\)
\(\Rightarrow\left(3n-1\right)\left(3n+1\right)-7⋮3n+1\)
\(\Rightarrow-7⋮3n+1\)
\(\Rightarrow3n+1\in U\left(7\right)=\left\{-1;1;-7;7\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}3n+1=-1\Rightarrow n=\dfrac{-2}{3}\\3n+1=1\Rightarrow n=0\\3n+1=-7\Rightarrow n=\dfrac{-8}{3}\\3n+1=7\Rightarrow n=2\end{matrix}\right.\)
Vì \(n\in Z\) \(\Rightarrow n\in\left\{0;2\right\}\)
Vậy \(n=0\) hoặc \(n=2\) thì \(3n^3+10n^2-8⋮3n+1\)
4)
a) ĐKXĐ: \(\left(x+1\right)\left(2x-6\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\2x\ne6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)
Vậy \(x\ne-1\) và \(x\ne3\) thì \(A\) được xác định
b) \(A=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Leftrightarrow3x^2+3x=0\)
\(\Leftrightarrow3x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=-1\left(KTMĐK\right)\end{matrix}\right.\)
Vậy để \(A=0\) thì \(x=0\)
Cho hai đa thức
M(x)= x^4+3x-1/9-x+3x^4+2x^2
N(x)==8x-2x^3+2/3+4x-4x^4-1/3
a, tính nghiệm của đa thức P(x)= M(x)=N(x)
b,thu gọn và sắp xếp hai đa thức theo lũy thừa giảm dần của biến
a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)
\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)
Cho 2 đa thức p(x)=4x^3+2x-3+2x-2x^2-1 và q(x)=6x^3-3x+5-2x+3x^2.
a. Tìm bậc của p(x) và q(x)
b. Tìm đa thức m(x) sao cho m(x)=p(x)+q(x)
a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)
Bậc của P(x) là 3
\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)
Bậc của Q(x) là 3
b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)
cho hai đa thức P(x)=x4-5x3-4x2+3x+m và Q(x)=x4+4x3-3x2+2x+n. Tìm m,n để hai đa thức trên cùng chia hết cho x-2
P(x) chia hết cho x-2 cần P(2)-0 nên thay x=2 vào P(x) được: P(x)=2^4-5.2^3-4.x^2+3.2+m=m-34=0 =>m=34
tương tự tìm n=-40
tại sao P(x) muốn chia hết cho x-2 thì P(2) phải bằng 0
Cho 2 đa thức P(x)=5x3- 3x + 7 - x và Q(x)= -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
a, thu gọn 2 đa thức P(x) vad Q(x)
b, tìm đa thức M(x)=P(x) + Q(x) và N(x)=P(x) - Q(x)
c, tìm nghiệm của đa thức M(x)
làm giúp mình với mấy bạn ơi !!!! mai mình nộp mất rồi :(( . Mình cảm ơn trước nhaaaaa:)))
a) P(x) = 5x3 - 3x + 7 - x
= 5x3 - 4x + 7
Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
= -x3 + x2 + x + 1
b) M(x) = P(x) + Q(x)
= ( 5x3 - 4x + 7 ) + ( -x3 + x2 + x + 1 )
= 5x3 - 4x + 7 -x3 + x2 + x + 1
= 4x3 + x2 - 3x + 8
N(x) = P(x) - Q(x)
= ( 5x3 - 4x + 7 ) - ( -x3 + x2 + x + 1 )
= 5x3 - 4x + 7 + x3 - x2 - x - 1
= 6x3 - x2 - 5x + 6
c) M(x) = 4x3 + x2 - 3x + 8
M(x) = 0 <=> 4x3 + x2 - 3x + 8 = 0
( Bạn xem lại đề nhé chứ lớp 7 chưa học tìm nghiệm đa thức bậc 3 đâu )
oke bạn, thank bạn nhaaaaa:)
hình như mik bị nhầm câu hỏi r cái phần Q(x) thì phải
đúng của nó là Q(x)= -5x3 + 2x - 3 + 2x - x2 - 2
bạn giải cho mik câu này nha :))))
Cho đa thức P(x)=x4+5x3-4x2+3x+m
và Q(x)=x4+4x3-3x2+2x+n
a) Tìm m,n để đa thức P(x) và Q(x) chia hết cho x-2
b) Xét đa thức R(x)=P(x)-Q(x) với m và n vừa tìm đc.... Hãy chứng tỏ R(x) chỉ có 1 nghiệm duy nhất
Cho hai đa thức P(x)=2x3-2x+x2-x3+3x+2
Và Q(x)=3x3-4x2+3x-4x-4x3+5x2+1
a.Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến
b.Tính M(x)=P(x)+Q(x); N(x)=P(x)-Q(x)
c.Chứng tỏ đa thức M(x) không có nghiệm
a) \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(=\left(2x^3-x^3\right)+x^2+\left(-2x+3x\right)+2\)
\(=x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(=\left(3x^3-4x^3\right)+\left(-4x^2+5x^2\right)+\left(3x-4x\right)+1\)
\(=-x^3+x^2-x+1\)
b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(=\left(x^3+x^2+x+2\right)+\left(-x^3+x^2-x+1\right)\)
\(=2x^2+3\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(=\left(x^3+x^2+x+2\right)-\left(-x^3+x^2-x+1\right)\)
\(=2x^3+2x+1\)
c) \(M\left(x\right)=2x^2+3>0\)vì \(2x^2\ge0,3>0\)do đó đa thức \(M\left(x\right)\)vô nghiệm.
cho 2 đa thức: p(x) = 2x^3 - 2x + x^2 - x^3 + 3x + 2 và Q(x) = 4x^3 - 5x^2 + 3x - 4x - 3x^3 + 4x^2 + 1
a) rút gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến
b) tính p(x) + Q(x) ; p(x) - Q(x)
c) chứng tỏ x=o không phải là nghiệm của 2 đa thức p(x) và Q(x)
a) \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\)
Q(x) \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)
b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\); \(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
Cho đa thức
M(x)=-2x^4-3x^2-7x-2
N(x)=3x^2+4x-5+2x^4
a) Tính P(x)=M(x)+N(x) rồi tìm nghiệm của đa thức P(x)
b) Tìm đa thức Q(x) sao cho Q(x)+M(x)=N(x)
a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)
\(N\left(x\right)=2x^4+3x^2+4x-5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)
Đặt P(x)=0
=>-3x-7=0
hay x=-7/3
b: Q(x)=N(x)-M(x)
\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)
\(=4x^4+6x^2+11x+7\)
`a)P(x)=M(x)+N(x)`
`=-2x^4-3x^2-7x-2+3x^2+4x-5+2x^4`
`=-3x-7`
Cho `P(x)=0`
`=>-3x-7=0`
`=>-3x=7`
`=>x=-7/3`
________________________________________________________
`b)Q(x)+M(x)=N(x)`
`=>Q(x)=N(x)-M(x)`
`=>Q(x)=3x^2+4x-5+2x^4+2x^4+3x^2+7x+2`
`=>Q(x)=4x^4+6x^2+11x-3`