Tìm các số nguyên x,y thỏa mãn:
x2 + 5y2 +4xy - 2y < 0
Tìm các cặp số nguyên x y thỏa mãn \(x^2+5y^2+2y-4xy-3=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;-3;1\right\}\)
Thế vào pt ban đầu tìm x nguyên tương ứng
\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)
Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)
Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)
Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)
Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)
Thay y=0 vào pt (1) ta không tìm được x nguyên
Thay y=-2 vào pt (1) ta không tìm được x nguyên
Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)
Thay y=-3 vào pt (1) tìm được \(x=-6\)
Thay y=1 vào pt (1) tìm được \(x=2\)
Tìm các số nguyên x,y thỏa mãn:x^2y+4xy-x+4y-1=0
(x2y+4xy+4y)-(x+2)=-1
y(x+2)2-(x+2)=-1
(x+2)[y(x+2)-1]=-1
+)TH1: x+2=1, [y(x+2)-1]=-1
->x=-1, y-1=-1, y=0
+)TH2: x+2=-1. [y(x+2)-1]=1
->x=-3, y=-2
Vậy x=-1,y=0 hay x=-3, y=-2
tìm các cặp số nguyên dương (x,y) thỏa mãn 3x^2+y^2+4xy+4x+2y+5=0
pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0
<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0
<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12
<=> (3x+2y+2)^2 - (y+1)^2 = -12
<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12
<=> (3x+3y+3).(3x+y+1) = -12
<=> (x+y+1).(3x+y+1) = -4
Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !
Tk mk nha
Tìm tất cả các số nguyên x,y . thỏa mãn phương trình : x2+6xy+5y2-4y-8=0
\(x^2+6xy+5y^2-4y-8=0\)
\(\Leftrightarrow (x^2+6xy+9y^2)-(4y^2+4y+1)=7\)
\(\Leftrightarrow (x+3y)^2-(2y+1)^2=7\)
\(\Leftrightarrow (x+y-1)(x+5y+1)=7\)
Vì x,y nguyên nên ta có các trường hợp sau:
TH1: \(\begin{cases} x+y-1=1\\ x+5y+1=7 \end{cases} \Leftrightarrow \begin{cases} x+y-1=1\\ 4y+2=6 \end{cases} \Leftrightarrow \begin{cases} x=1\\ y=1 \end{cases}\)
Các TH còn lại bạn tự làm nhé
\(x^2+6xy+5y^2-4y-8=0\)
\(\Leftrightarrow\left(x^2+6xy+9y^2\right)-4y^2-4y-1-7=0\)
\(\Leftrightarrow\left(x+3y\right)^2-\left(2y+1\right)^2=7\)
\(\Leftrightarrow\left(x+5y+1\right)\left(x+y-1\right)=7=\left[{}\begin{matrix}1.7\\7.1\\\left(-1\right).\left(-7\right)\\\left(-7\right).\left(-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5y+1=1;x+y-1=7\\x+5y+1=7;x+y-1=1\\x+5y+1=-1;x+y-1=-7\\x+5y+1=-7;x+y-1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10;y=-2\left(nhận\right)\\x=y=1\left(nhận\right)\\x=y=1\left(nhận\right)\\x=10;y=-2\left(nhận\right)\end{matrix}\right.\)
-Vậy các cặp số (x,y) là \(\left(10;-2\right);\left(1;1\right)\)
tìm các số nguyên dương x,y thỏa mãn 3x^2+y^2+4xy=5x+2y+1
\(3x^2+y^2+4xy=5x+2y+1\)
\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)
Coi phương trình (1) là phương trình ẩn x tham số y, ta có:
\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)
\(=16y^2-40y+25-12y^2+24y+12\)
\(=4y^2-16y+37\)
Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).
\(\Rightarrow4y^2-16y+16+21=a^2\)
\(\Rightarrow a^2-\left(2y-4\right)^2=21\)
\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)
\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 1 | 3 |
a+2y-4 | 21 | 7 |
a | 11 | 5 |
y | 7 | 3 |
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 21 | 7 |
a+2y-4 | 1 | 3 |
a | 11 | 5 |
y | -3(loại vì y>0) | 1 |
Với a=11, y=7. Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)
\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)
Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)
\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)
Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)
\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)
Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)
Dòng 15 từ dưới đếm lên, sửa:
Với \(y< 2\Rightarrow a-2y+4>a+2y-4\) và \(a-2y+4>0\). Lập bảng:
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Tìm cặp số nguyên (x;y), với x là số nguyên dương nhỏ nhất có 3 c.số và thỏa mãn pt \(3x^3-2y^2+4xy-8x+5128=0\)
Bài 1
Tìm x; y thỏa mãn 5x2 + 5y2 + 8xy + 2y – 2x + 2 = 0
Bài 2
Tìm cặp số nguyên (x;y) thỏa mãn x2 + 8y2 + 4xy – 2x – 2y = 4
Bài 3
Cho a, b, c là các số không âm và không lớn hơn 2 thỏa mãn a + b + c = 3. Chứng minh rằng:a^2+b^2+c^2<=5
Answer:
Bài 1:
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Rightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Mà: \(\hept{\begin{cases}4\left(x+y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
Bài 2:
\(x^2+8y^2+4xy-2x-4y-4\)
\(\Rightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)
\(\Rightarrow\left(x+2y+1\right)^2=5-4y^2\)
Trường hợp 1: \(4y^2=0\)
PT \(\Leftrightarrow\left(x+2y+1\right)^2=5\)
Có: 5 không phải là số chính phương
Vậy không có số nguyên \(x\) thoả mãn.
Trường hợp 2: \(4y^2>0\)
Mà: \(\left(x+2y+1\right)\ge0\Rightarrow5\ge4y^2\)
Mà \(y\) nguyên \(\Rightarrow4y^2=4\Rightarrow y\in\left\{\pm1\right\}\)
Với \(y=1\Rightarrow x+3=1\Rightarrow x=-2\) (Thoả mãn)
Với \(y=-1\Rightarrow x-1=1\Rightarrow x=2\) (Thoả mãn)
Tìm cặp số nguyên dương (x,y) với x là số nguyên dương nhỏ nhất có ba chữ số và thỏa mãn phương trình:
\(3x^3-2y^2+4xy-8x+5128=0\)