Những câu hỏi liên quan
PX
Xem chi tiết
NS
17 tháng 10 2017 lúc 8:07

Cứ 4 số 2 thì đc 1 số tận cùng=6

-->Có số cặp là: 21:4 = 5(cặp)( dư 1 số)

....6 x ...6x...6x...6x...6x2 =....6 x2 =...2

Bình luận (0)
BV
17 tháng 10 2017 lúc 9:37

\(2^{21}=2^{20+1}=\left(2^4\right)^5.2=\left(16\right)^5.2=\left(...6\right)^5.2=...6.2=...2\).
Vậy \(2^{21}\) có tận cùng là 2.

Bình luận (0)
NA
Xem chi tiết
NT
5 tháng 9 2023 lúc 20:36

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

Bình luận (0)
NA
Xem chi tiết
NH

Bài 1:

S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)

Nhóm 4 thừa số 2 vào một nhóm thì vì:

2023 : 4 = 505 dư 3 

Vậy

S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)

S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8

S = \(\overline{..6}\) x 8

S = \(\overline{..8}\)

                

       

Bình luận (0)
NH

             Bài 2:

S = 3 x 13 x 23 x...x 2023

Xét dãy số: 3; 13; 23;..;2023

Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10

Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)

 Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.

  Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)

  Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)

  A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)

   A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27

   A = \(\overline{..7}\)

   

 

 

 

Bình luận (0)
NH

            Bài 3:

A =4 x 4 x 4 x...x 4(2023 chữ số 4)

vì 2023 : 2 =  1011 dư 1

A = (4 x 4) x (4 x 4) x...x(4 x 4) x 4 có 1011 nhóm (4 x 4)

A = \(\overline{..6}\) x \(\overline{..6}\) x \(\overline{..6}\)  x 4

A = \(\overline{...6}\) x 4

A = \(\overline{...4}\) 

 

 

Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
YT
Xem chi tiết
BT
9 tháng 4 2015 lúc 20:14

5 ko bít đúng ko

bn có chơi liên minh huyền thoại à

mik thích kalista với tôn ngộ không với yasuo nữa

Bình luận (0)
HT
9 tháng 4 2015 lúc 20:16

\(5\)

Bình luận (0)
TB
Xem chi tiết
TZ
30 tháng 10 2016 lúc 10:11

Số tận cùng của 521 là : 5

Bình luận (0)
VP
Xem chi tiết
TL
21 tháng 10 2015 lúc 22:03

1725 = (174)6.17 = (....1)6.17 = (....1).17 = (....7)

24= (...6)

1321 = (134)5.13 = (....1)5.13 = (....1).13 = (....3)

=> M = (...7) + (....6) - (...3) = (....3) - (....3) = (....0)

Vậy M có tận cùng là 0

Bình luận (0)
HT
21 tháng 10 2015 lúc 21:54

1725=(174)6.17=......1.17=....7

244=......6

1321=(134)5.13=........1.13=.......3

vậy 1725+244+1321=.....7+...6....3=......6

vậy M có chữ số tận cùng là 6

Bình luận (0)
VM
Xem chi tiết
LP
19 tháng 11 2023 lúc 11:00

 Ta nhận thấy một số có tận cùng là \(x\) thì khi lũy thừa lên mũ \(4k+1\left(k\inℕ\right)\) thì số nhận được cũng sẽ có tận cùng là \(x\). (*)

 Thật vậy, giả sử \(N=\overline{a_0a_1a_2...a_n}\). Khi đó \(N^{4k+1}=\left(\overline{a_0a_1a_2...a_n}\right)^{4k+1}\) \(=\left(\overline{a_0a_1a_2...a_{n-1}0}+a_n\right)^{4k+1}\) \(=a_n^{4k+1}\) nên ta chỉ cần xét số dư của các số từ 0 đến 9 lũy thừa với số mũ \(4k+1\).

 Dễ nhận thấy nếu \(a_n\in\left\{0,1,5,6\right\}\) thì \(a_n^{4k+1}\) sẽ có chữ số tận cùng là \(a_n\).

 Nếu \(a_n\in\left\{3,7,9\right\}\) thì để ý rằng \(3^4=9^2=81;7^4=2401\) đều có tận cùng là 1 nên hiển nhiên \(a_n^{4k}=\left(a_n^4\right)^k\) có tận cùng là 1. Do đó nếu nhân thêm \(a_n\) thì \(a_n^{4k+1}\) có chữ số tận cùng là \(a_n\).

 Nếu \(a_n\in\left\{2,4,8\right\}\) thì do \(2^4=16;4^4=256;8^4=4096\) đều có chữ số tận cùng là 6 \(\Rightarrow a_n^{4k}\) có chữ số tận cùng là 6. Khi nhân thêm \(a_n\) vào thì bộ \(\left(a_n;a_n^{4k+1}\right)\) sẽ là \(\left(2;2\right);\left(4;4\right);\left(8;8\right)\)

 Vậy (*) đã được chứng minh.

 \(\Rightarrow\) S có chữ số tận cùng là \(2+3+4+...+4\) (tới đây bạn chỉ cần đếm xem có bao nhiêu trong mỗi chữ số từ 0 đến 9 xuất hiện trong tổng trên là xong nhé)

\(a_n^{4k}\)

Bình luận (0)