Tìm nghiệm nguyên của pt : \(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x}}}}=y\)
tìm nghiệm nguyên dương của pt \(\sqrt{x}+\sqrt{y}=\sqrt{1980}\)
tìm nghiệm nguyên dương của pt : \(\sqrt{x}+\sqrt{y}=\sqrt{1980}\)
Tìm nghiệm nguyên của PT: \(13\sqrt{x}-7\sqrt{y}=\sqrt{2000}\)
\(13\sqrt{x}-7\sqrt{y}=20\sqrt{5}=>\)VN
tìm nghiệm nguyên dương của pt: \(\sqrt{x} +\sqrt{y}=\sqrt{2012}\)
từ đề bài => 0 < x; y < 2012 và
\(\sqrt{y}=\sqrt{2012}-\sqrt{x}\Rightarrow y=\left(\sqrt{2012}-\sqrt{x}\right)^2=2012+x-2\sqrt{2012}\sqrt{x}=2012+x-4.\sqrt{503.x}\)Vì y nguyên nên \(\sqrt{503.x}\) nguyên => x = 503.k2 Mà 0< x < 2012 =>0< 503. k2 < 2012 => 0< k2 < 4 => k2 = 1
=> x = 503 => y = 2012 + 503 - 4.503 = 503
Vậy x = y = 503
tìm tất cả các giá trị nguyên của m để hệ pt có nghiệm
\(\left\{{}\begin{matrix}\sqrt{2x}+\sqrt{3-y}=m\\\sqrt{2y}+\sqrt{3-x}=m\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{2x}+\sqrt{3-y}=m\left(1\right)\\\sqrt{2y}+\sqrt{3-x}=m\left(2\right)\end{matrix}\right.\) \(\left(0\le x,y\le3\right)\)
\(\left(1\right)-\left(2\right)\Leftrightarrow\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)
\(\Leftrightarrow\dfrac{2x-2y}{\sqrt{2x}+\sqrt{2y}}+\dfrac{3-y-3+x}{\sqrt{3-y}+\sqrt{3-x}}=0\Leftrightarrow\left(x-y\right)\left(\dfrac{2}{\sqrt{2x}+\sqrt{2y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(3\right)\\\dfrac{2}{\sqrt{2x}+\sqrt{2y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\left(1\right)và\left(3\right)\Rightarrow\sqrt{2x}+\sqrt{3-x}=m\)
\(m^2=x+3+2\sqrt{2x\left(3-x\right)}\ge3\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{3}\\m\le-\sqrt{3}\end{matrix}\right.\)\(\left(4\right)\)
\(m\le\sqrt{3\left(x+3-x\right)}=3\left(5\right)\)
\(\left(4\right)\left(5\right)\Rightarrow\sqrt{3}\le m\le3\Rightarrow m=\left\{2;3\right\}\)
Trừ vế cho vế:
\(\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)
\(\Rightarrow\dfrac{\sqrt{2}\left(x-y\right)}{\sqrt{x}+\sqrt{y}}+\dfrac{x-y}{\sqrt{3-y}+\sqrt{3-x}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\)
\(\Leftrightarrow x=y\)
Thế vào pt đầu:
\(\sqrt{2x}+\sqrt{3-x}=m\)
Ta có: \(\sqrt{2.x}+\sqrt{1.\left(3-x\right)}\le\sqrt{\left(2+1\right)\left(x+3-x\right)}=3\)
\(\sqrt{2x}+\sqrt{3-x}=\sqrt{x}+\sqrt{3-x}+\left(\sqrt{2}-1\right)\sqrt{x}\ge\sqrt{x+3-x}+\left(\sqrt{2}-1\right)\sqrt{x}\ge\sqrt{3}\)
\(\Rightarrow\sqrt{3}\le m\le3\Rightarrow m=\left\{2;3\right\}\)
tìm các nghiệm của PT:\(\begin{cases}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{cases}\)
tìm các nghiệm số thực của PT: \(\begin{cases}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{cases}\)
Tìm nghiệm nguyên của phương trình \(\sqrt{x+y+3}\)+1=\(\sqrt{x}\)+\(\sqrt{y}\)
Lời giải:
PT $\Leftrightarrow \sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1$
$\Rightarrow x+y+3=(\sqrt{x}+\sqrt{y}-1)^2$
$\Leftrightarrow x+y+3=x+y+1-2(\sqrt{x}+\sqrt{y}-\sqrt{xy})$
$\Leftrightarrow 1+\sqrt{x}+\sqrt{y}-\sqrt{xy}=0(*)$
$\Rightarrow (\sqrt{x}+\sqrt{y})^2=(\sqrt{xy}-1)^2$
$\Rightarrow 4\sqrt{xy}=xy+1-x-y\in\mathbb{Z}$
Ta có nhận xét sau: Với số không âm $a$ bất kỳ thì khi $\sqrt{a}$ là số hữu tỉ thì $\sqrt{a}$ cũng là số chính phương.
Do đó: $\sqrt{xy}$ là scp
Kết hợp $(*)$ suy ra $\sqrt{x}+\sqrt{y}\in\mathbb{Z}$
$\sqrt{x}(\sqrt{x}+\sqrt{y})=x+\sqrt{xy}\in\mathbb{Z}$
$\Rightarrow \sqrt{x}=\frac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\in\mathbb{Q}$
$\Rightarrow \sqrt{x}$ là scp. Kéo theo $\sqrt{y}$ là scp.
Từ $(*)$ ta cũng có $(\sqrt{x}-1)(1-\sqrt{y})=-2$
Đến đây thì với $\sqrt{x}, \sqrt{y}\in\mathbb{Z}$ ta có pt tích khá đơn giản.
tìm m để hệ pt có nghiệm
\(\left\{{}\begin{matrix}\sqrt{1+x}+\sqrt{y-2}=\sqrt{m}\\\sqrt{1+y}+\sqrt{x-2}=\sqrt{m}\end{matrix}\right.\)
Lời giải: ĐK: $x,y\geq 2$
HPT \(\Rightarrow \sqrt{x+1}-\sqrt{y+1}+(\sqrt{y-2}-\sqrt{x-2})=0\)
\(\Leftrightarrow (x-y).\left[\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{y-2}+\sqrt{x-2}}\right]=0\)
\(\Leftrightarrow x-y=0\) (do dễ thấy biểu thức trong ngoặc vuông luôn âm)
\(\Leftrightarrow x=y\)
Khi đó: $\sqrt{x+1}+\sqrt{x-2}=\sqrt{m}$
$\Leftrightarrow 2x-1+2\sqrt{(x+1)(x-2)}=m$
Để hpt có nghiệm thì pt trên có nghiệm
$\Leftrightarrow m\geq \min (2x-1+2\sqrt{(x+1)(x-2)})$
$\Leftrightarrow m\geq 2.2-1+2.0=3$
Vậy $m\geq 3$