Những câu hỏi liên quan
LM
Xem chi tiết
NT
12 tháng 4 2023 lúc 10:14

loading...

Bình luận (0)
DN
Xem chi tiết
NN
8 tháng 5 2015 lúc 10:57

 

\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(2A=\frac{1}{1}-\frac{1}{100}\)

\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)

Câu B và C làm tương tự.

Bình luận (0)
DL
8 tháng 5 2015 lúc 11:12

bạn Nhi làm sai rồi

\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được

\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)

kết quả là : \(\frac{49}{100}\)

Bình luận (0)
H24
Xem chi tiết
NT
25 tháng 7 2023 lúc 10:19

Bài 1 :

\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)

Ta thấy :

\(3=2^2-1\)

\(15=4^2-1\)

\(35=6^2-1\)

.....

\(9999=100^2-1\)

\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)

\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)

\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)

Bình luận (0)
H24
25 tháng 7 2023 lúc 10:26

nhanh len nhé mik đang cần gấp ai lam trước mik tích cho

 

Bình luận (0)
NT
25 tháng 7 2023 lúc 11:14

Bài 6 :

\(C=1^2+2^2+...+100^2=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}=\dfrac{100.101.201}{6}=338350\)

Bài 9 :

\(S=1^2+2^2+3^2+...+99^2=\dfrac{99.\left(99+1\right)\left(2.99+1\right)}{6}=\dfrac{99.100.199}{6}=328350\)

Bình luận (0)
PL
Xem chi tiết
NM
15 tháng 8 2023 lúc 16:33

a/

3A=1.2.3+2.3.3+3.4.3+...+98.99.3=

=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=

=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=

=98.99.100=> A=98.33.100

b

6B=1.3.6+3.5.6+5.7.6+...+99.101.6=

=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=

=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=

=1.3+99.101.103=> (3+99.101.103):6

c/

9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=

=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=

=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=

=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9

Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k

Số k được tính theo quy luật \(k=\left(n+1\right)xd\)

            Trong đó: n: số thừa số của 1 số hạng

                            d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng

Chúc em học tốt

 

 

Bình luận (0)
TH
Xem chi tiết
DK
Xem chi tiết
H24
9 tháng 5 2020 lúc 17:24

nhào vô  $$$$$$$$$$ cho money

Bình luận (0)
 Khách vãng lai đã xóa
HD
9 tháng 5 2020 lúc 17:27

Trả lời :

Bn HACK NICK FRÉ FIRE đừng bình luận linh tinh nhé !

- Hok tốt !

^_^

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 5 2020 lúc 11:00

Akayuma roi vao hoancanhkho khan hoi anh can lam gi ai dich được   

Bình luận (0)
 Khách vãng lai đã xóa
ES
Xem chi tiết
DH
15 tháng 4 2017 lúc 15:34

mình ko biết k nha mình đang âm

Bình luận (0)
GN
Xem chi tiết
NC
23 tháng 9 2020 lúc 12:39

Ta có: 

\(A=1+2.6+3.6^2+4.6^3+...+100.6^{99}\)

=> \(6A=6+2.6^2+3.6^3+....+99.6^{99}+100.6^{100}\)

=> A - 6A = \(1+6+6^2+6^3+...+6^{99}-100.6^{100}\)

=> \(-5A=1+6+6^2+...+6^{99}-100.6^{100}\)

Đặt: \(B=1+6+6^2+...+6^{99}\)

=> \(6B=6+6^2+6^3+...+6^{100}\)

=> 6 B - B = \(6^{100}-1\)

=> B = \(\frac{6^{100}-1}{5}\)

=> \(-5A=\frac{6^{100}-1}{5}-100.6^{100}\)

=> \(A=\frac{499.6^{100}+1}{25}\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
LL
18 tháng 9 2021 lúc 18:12

Bài 1:

\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)

\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)

\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)

\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)

\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)

Bài 2: 

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)

 

Bình luận (1)