Tính giá trị của: \(M=100^2-99^2+98^2-97^2+...+2^2-1^2\)
Tính giá trị các biểu thức sau:
a) A = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100
b) B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
Tính giá trị biểuu thức 2^100 - 2^ 99 + 2^98 - 2^97 + ...+ 2
gọi là A đi
=> 2A=\(2^2+2^3+...+2^{101}\)
=> \(2A-A=A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)=2^{101}-2=2\left(2^{100}-1\right)\)
ng thi bich hau co the giai chi tiet hon dc ko
tính giá trị biểu thức sau
\(2^{100}-2^{99}-2^{98}-2^{97}-...-2^2-2-1\)
\(=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2+1\right)\)
Đặt \(B=1+2+2^2+...+2^{98}+2^{99}\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow B=\left(2+2^2+2^3+..+2^{100}\right)-\left(1+2+2^2+...+2^{99}\right)\)
\(\Rightarrow B=2^{100}-1\)
\(\Rightarrow2^{100}-2^{99}-2^{98}-....-2-1=2^{100}-\left(2^{100}-1\right)\)
\(=1\)
Tính giá trị biểu thức sau:
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
Bài 2 Tính giá trị của các biểu thức sau :
a) A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + .... - 79 - 80 - 81
b) B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + .... + 97 - 98 - 99 + 100
c) C= 2100 - 299 - 298 - ..... - 2 - 1
tính giá trị của:
a, M=100^2-99^2+98^2-97^2+...+2^2-1^2
b, B=(20^2+18^2+16^2+...+4^2+2^2)-(19^2+17^2+15^2+...+3^2+1^2)
giúp mik vs nha
Tính giá trị biểu thức:
2100-299-298-297-......-22-2-1
Tính giá trị biểu thức của
2+3+4+5+......+96+97+98+99+100+101
Tổng trên có giá trị là :
Số số hạng là :
\(\left(101-2\right):1+1=100\)
Tổng trên có giá trị là :
\(\dfrac{\left(101+2\right).100}{2}=5150\)
A= 2 + 3+4+...+96+97+98+99+100+101
Khoảng cách của dãy số trên là: 3-2 =1
Số số hạng của dãy số trên là: (101 - 2): 1 + 1 = 100 (số hạng)
Tổng A là: A = (101+2)\(\times\) 100 : 2 =5150
Đáp số: 5150