cho đa thức F(x)=ax2+bx+c với a là số nguyên dương và f(5)-f(4)=2023.
cmr f (9)-f(2)là hợp số
Cho đa thức f(x)=ax³ +bx²+cx+d với a là số nguyên dương và f(5)-f(4)=2019.CM f(7)-f(2) là hợp số
\(f\left(5\right)-f\left(4\right)=\left(125a+25b+5c+d\right)-\left(64a+16b+4c+d\right)=61a+9b+c=2019\)
\(f\left(7\right)-f\left(2\right)=\left(343a+49b+7c+d\right)-\left(8a+4b+2c+d\right)=335a+45b+5c=5.\left(61a+9b+c\right)+30a=2019+30a⋮3\)
\(\Rightarrowđpcm\)
Cho đa thức f(x)=ax2-bx+c với a,b,c là các số nguyên dương và a khác 0 sao cho f(9) chia hết cho 5 và f(5) chia hết cho 9.CMR f(104) chia hết cho 45
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
cho đa thức bậc 3 f(x) = ax3 +bx2 + cx +d với a là số nguyên dương. Biết rằng f(5) - f(4) = 2020. CMR: f(7) - f(2) là hợp số
Cho đa thức f(x)= ax3+bx2+cx+d với a là số nguyên dương, biết f(5)-f(4)= 2019, Chứng minh f(7)-f(2) là hợp số
Ta có:
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(4\right)=64a+16b+4c+d\)
\(f\left(7\right)=343a+49b+7c+d\)
\(f\left(2\right)=8a+4b+2c+d\)
Xét:
\(f\left(5\right)-f\left(4\right)=125a+25b+5c+d-64a-16b-4c-d\)
\(=61a+9b+c=2019\)
Khi đó:
\(f\left(7\right)-f\left(2\right)=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c=5\left(61a+9b+c\right)+30=5\cdot2019+30⋮5\)
Vậy ta có đpcm
không ra được đâu, 335 không chia hết cho 61, 5.61=305 chứ không phải bằng 335
* Ta có A(x)=ax^3+bx^2+cx+d
=>A(5)=125a+25b+5c+d
A(4)=64a+16b+4c+d
A(7)=343a+49b+7c+d
A(2)=8a+4b+2c+d
+)Có A(5)-A(4)=(125a+25b+5c+d)-(64a+16b+4c+d)
=>A(5)-A(4)=61a+9b+c
+) Xét A(7)-A(2)=(343a+49b+7c+d)-(8a+4b+2c+d)
=>A(7)-A(2)=335a+45b+5c
=(61a+9b+c).5+30a
=(2022.5+30a) chia hết cho 2
Vì a thuộc Z+ nên 2022.5+30a>2 nên A(7)-A(2) là hợp số
Cho đa thức f(x)=ax2+bx+c với a,b,c là các số hữu tỉ thỏa mãn 2a-b=0
CMR: f(-5)×f(3) ko thể là số âm.
Cho đa thức f|(x)=ax2-bx+c với a,b,c là các số nguyên và a khac 0 sao cho f(9) chia hết cho 5 và f(5) chia hết cho 9. CMR: f(104) chia hết cho 45
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Cho đa thức f(x) = ax2 + bx + c (a, b, c là các hằng số). Biết f(1) = 6; f(2) = 16. Tính f(12) - f(-9)
Lời giải:
$f(1)=a+b+c=6$
$f(2)=4a+2b+c=16$
$f(12)-f(-9)=(144a+12b+c)-(81a-9b+c)$
$=63a+21b=21(3a+b)$
$=21[(4a+2b+c)-(a+b+c)]=21(16-6)=21.10=210$
Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\)
Với a là số nguyên dương, biết f(5)-f(4)=2012.Chứng minh f(7)-f(2) là hợp số
giải hộ ik,, ko pk giải mới up lên chứ pk up lm j @@@