Những câu hỏi liên quan
TT
Xem chi tiết
AH
31 tháng 7 2021 lúc 10:29

Lời giải:

Đặt biểu thức trên là $A$.
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{37.38.39}\)

\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)

\(=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\)

\(\Rightarrow A=\frac{185}{741}\)

 

 

Bình luận (0)
SS
Xem chi tiết
NH
5 tháng 2 2018 lúc 19:12

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.......+\dfrac{1}{37.38.39}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.....+\dfrac{1}{37.38}-\dfrac{1}{38.39}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{38.39}\)

\(=\dfrac{370}{741}\)

Bình luận (0)
DS
5 tháng 2 2018 lúc 20:00

\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+......+\dfrac{1}{37.38.39}\)

Ta có:

\(\dfrac{1}{1.2.3}=\dfrac{1}{1.2}-\dfrac{1}{2.3}\); \(\dfrac{1}{2.3.4}=\dfrac{1}{2.3}-\dfrac{1}{3.4}\);.......

\(\Rightarrow A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...........+\dfrac{1}{37.38}-\dfrac{1}{38.39}\)

\(\Rightarrow A=\dfrac{1}{1.2}-\dfrac{1}{38.39}\)

\(=\dfrac{370}{741}\)

Vậy \(A=\dfrac{370}{741}\)

Bình luận (0)
AW
Xem chi tiết
PT
26 tháng 4 2017 lúc 11:40

a) Ta có:

3A= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\left(1\right)\)

A= \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\left(2\right)\)

Lấy (1) - (2) ta được:

1-\(\dfrac{1}{3^{100}}\)

b) Ta xét:

\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{2}{1.2.3},...,\dfrac{1}{37.38}-\dfrac{1}{38.39}=\dfrac{2}{37.38.39}\)

Ta có:

2B=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+..+\dfrac{2}{37.38.39}\)

=\(\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+..+\left(\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)

=\(\dfrac{1}{1.2}-\dfrac{1}{38.39}=\dfrac{740}{38.39}=\dfrac{370}{741}\)

Vậy \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+..+\dfrac{2}{37.38.39}\)

=\(\dfrac{370}{741}\)

Nếu bn cảm thấy mk đúng tick cho mk nhé!

haha

Bình luận (0)
NG
Xem chi tiết
AN
1 tháng 9 2017 lúc 19:00

A= \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{4.5.6}+....+\dfrac{1}{37.38.39}\)

A=\(\dfrac{1}{1}-\dfrac{1}{39}\)

A=\(\dfrac{38}{39}\)

còn lại tự làm do mình có việc chút

Bình luận (0)
TH
31 tháng 8 2017 lúc 21:13

Chưa học

Bình luận (1)
Xem chi tiết
OY
26 tháng 9 2021 lúc 9:30

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

Bình luận (0)
H24
Xem chi tiết
NV
17 tháng 5 2022 lúc 17:15

\(2C=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{98.99.100}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)

\(=\dfrac{1}{1.2}-\dfrac{1}{99.100}=\dfrac{50.99-1}{100.99}=\dfrac{4949}{9900}\)

Bình luận (0)
H24
17 tháng 5 2022 lúc 17:15

`A=1/[1.2.3]+1/[2.3.4]+....+1/[98.99.100]`

`A=1/2.(2/[1.2.3]+2/[2.3.4]+....+2/[98.99.100])`

`A=1/2.(1/[1.2]-1/[2.3]+1/[2.3]-1/[3.4]+....+1/[98.99]-1/[99.100])`

`A=1/2.(1/[1.2]-1/[99.100])`

`A=1/2.(1/2-1/9900)`

`A=1/2.(4950/9900-1/9900)`

`A=1/2 . 4949/9900`

`A=4949/19800`

Bình luận (0)
TR
17 tháng 5 2022 lúc 17:18

\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(C=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

\(C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(C=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(C=\dfrac{1}{2}.\dfrac{4949}{9900}=\dfrac{4949}{19800}\)

Bình luận (0)
NL
Xem chi tiết
NV
17 tháng 5 2022 lúc 15:10

\(2S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{23+24+25}=\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+...+\left(\dfrac{1}{23.24}-\dfrac{1}{24.25}\right)\)\(=\dfrac{1}{1.2}-\dfrac{1}{24.25}=\dfrac{299}{600}\) 

Vậy \(S=\dfrac{299}{600}\div2=\dfrac{299}{1200}\)

Bình luận (1)
NH
Xem chi tiết
TN
Xem chi tiết